吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 856-865.

• • 上一篇    下一篇

基于用户画像与二部图的大学生就业岗位推荐算法 

何剑萍a, 徐胜超b, 贺敏伟   

  1. 广州华商学院a. 管理学院;b. 数据科学学院,广州511300
  • 收稿日期:2023-09-23 出版日期:2024-10-21 发布日期:2024-10-21
  • 作者简介:何剑萍(1985— ), 女, 广州人, 广州华商学院讲师, 主要从事统计学与数据挖掘研究, (Tel)86-13824483568(E-mail) hejianping_2023@126. com; 徐胜超(1980— ), 男, 武汉人, 广州华商学院副教授, 主要从事并行分布式处理软件研究, (Tel)86-13768173658(E-mail)isdooropen@126. com。
  • 基金资助:
    国家自然科学基金资助项目(61772221); 广州华商学院校内科研导师制冶基金资助项目(2023HSDS26) 

Employment Position Recommendation Algorithm for University Students Based on User Profile and Bipartite Graph 

HE Jianpinga, XU Shengchaob, HE Minweib   

  1. a. School of Management; b. School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China
  • Received:2023-09-23 Online:2024-10-21 Published:2024-10-21

摘要: 针对现有就业岗位推荐算法仅基于单一的信息源或简单的用户分类,无法充分捕捉大学生的多维特征和 个性化需求,从而导致推荐效果不佳的问题,提出基于用户画像与二部图的大学生就业岗位推荐算法。 在融合 长短期记忆神经网络的条件随机场模型辅助下,从高校图书馆的档案管理系统中抽取出用户基础信息,基于此 生成大学生用户画像。 计算不同用户画像特征之间的距离,并采用k均值聚类算法完成用户画像聚类。 运用 二部图网络搭建基础的大学生就业岗位推荐结构,基于能量分配情况设计初步推荐方案。 最后,以加权随机森 林模型为基础,考虑用户对项目特征的偏好实现大学生就业岗位的分类,修正初步给出推荐列表的评分,获取 精准的大学生就业岗位推荐结果。 实验结果表明,应用该方法,给出长度为120的大学生就业岗位推荐列表, 其推荐结果的命中率达到了0.94。 由此说明,该方法可以精准得出大学生就业岗位推荐结果,从而提高就业 匹配度和人力资源利用效率。 

关键词: 二部图, 就业岗位, 个性化推荐, 用户画像, 评分修正 

Abstract: To improve the employment matching and human resource utilization efficiency of college students, many researchers are dedicated to developing effective job recommendation algorithms. However, existing recommendation algorithms often rely solely on a single information source or simple user classification, which can not fully capture the multidimensional features and personalized needs of college students, resulting in poor recommendation performance. Therefore, a job recommendation algorithm for college students based on user profiles and bipartite graphs is proposed. With the aid of the conditional random field model based on the integration of long and short-term memory neural networks, the basic user information is extracted from the archives management system of the university library, based on which the user portrait of university students is generated. The distance between different user profile features is calculated, and the k-means clustering algorithm is used to complete the user profile clustering. The bipartite graph network is used to build the basic job recommendation structure for college students and a preliminary recommendation scheme is designed based on energy distribution. Finally, based on the weighted random forest model, the classification of college students’ employment positions is realized by considering users’ preferences for project features, and the score of the initial recommendation list is revised to obtain accurate recommendation results for college students’ full employment positions. The experimental results show that after the proposed method is applied, a recommendation list of 120 full employment positions for college students is given, and the hit rate of the recommendation result reaches 0. 94. This shows that the research method can accurately obtain the results of college students’ employment position recommendation, so as to improve the employment matching degree and human resource utilization efficiency. 

Key words: bipartite graph, employment positions, personalized recommendation, user profile, score correction

中图分类号: 

  • TP301.6