吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 866-873.

• • 上一篇    下一篇

基于人体关键点的滑雪动作评分方法研究 

梅  健1, 孙珈玥2, 邹青宇2   

  1. 1. 吉林化工学院 信息与控制工程学院,吉林 吉林132022;2. 北华大学 电气与信息工程学院,吉林 吉林132021
  • 收稿日期:2023-06-04 出版日期:2024-10-21 发布日期:2024-10-21
  • 通讯作者: 邹青宇(1983— ), 男, 吉林省吉林市人, 北华大学副教授, 主要从事复杂 系统研究,(Tel)86-18604491507(E-mail)zouqingyu2002@126. com。
  • 作者简介: 梅健(1995— ), 男, 江苏盐城人, 吉林化工学院硕士研究生, 主要从事人体姿态识别研究, (Tel)86-15720688686 (E-mail)1140652081@ qq. com
  • 基金资助:
    吉林省高等教育教学改革研究基金资助项目(JLJY202377910357); 吉林省教育厅科学研究基金资助项目 (JJKH20230065KJ); 吉林市科技创新发展计划基金资助项目(20210103098); 国家大学生创新创业训练计划基金资助 项目(202210201055) 

Research on Scoring Method of Skiing Action Based on Human Key Points

MEI Jian1, SUN Jiayue2, ZOU Qingyu2    

  1. 1. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; 2. College of Electrical and Information Engineering, Beihua University, Jilin 132021, China
  • Received:2023-06-04 Online:2024-10-21 Published:2024-10-21

摘要:  针对使用传统方法识别评估滑雪运动员的训练动作存在人为主观、准确率低等问题,提出了一种基于 改进OpenPose YOLOv5(You Only Look Once version 5)的动作分析算法。 利用 CSP-Darknet53(Cross Stage Paritial-Network 53)作为 OpenPose 外部网络将输入图片降维处理并提取特征图。 融合优化 YOLOv5 算法, 提取 人体骨骼关键点构成人体骨架与标准动作进行对比,根据角度信息评分,并在模型中加入损失函数,量化实际 检测动作与标准动作的误差。 该模型可对运动员动作即时监控,能完成初步的动作评估。 实验结果表明,检测 识别准确率达到95%,可满足日常滑雪训练需求。 

关键词: OpenPose 算法, YOLOv5 算法, 深度学习, 滑雪动作分析, 损失函数

Abstract: The training actions of skiing athletes can directly reflect their level, but traditional methods for identifying and evaluating actions have shortcomings such as subjectivity and low accuracy. To achieve accurate analysis of skiing posture, a motion analysis algorithm based on improved OpenPose and YOLOv5(You Only Look Once version 5) is proposed to analyze athletes爷 movements. There are two main improvements. First, CSP-Darknet53(Cross Stage Paritial-Network 53) is used as the external network for OpenPose to reduce the dimension of the input image and extract the feature map. Then, the YOLOv5 algorithm is fused to optimize it. The key points of the human skeleton are extracted to form the human skeleton and compared with the standard action. According to the angle information, the loss function is added to the model to quantify the error between the actual detected action and the standard action. This model achieves accurate and real-time monitoring of athlete action evaluation in training scenarios and can complete preliminary action evaluation. The experimental results show that the detection and recognition accuracy reaches 95%, which can meet the needs of daily skiing training. 

Key words: OpenPose; you only look Once version 5(YOLOv5), deep learning, skiing movement analysis; loss function 

中图分类号: 

  • TP389.1