吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (6): 1041-1047.

• • 上一篇    下一篇

IRS 辅助C-IoT 系统的联合波束形成设计

孙振兴1a, 沙国辉2, 南春萍1b, 胥子昂2, 李雪峰2   

  1. 1. 东北石油大学秦皇岛校区a. 电气信息工程系;b. 基础部,河北秦皇岛066004; 2. 东北石油大学电气信息工程学院,黑龙江大庆163318
  • 收稿日期:2023-10-25 出版日期:2024-12-23 发布日期:2024-12-23
  • 作者简介:孙振兴(1981— ), 男, 黑龙江鹤岗人, 东北石油大学副教授,硕士生导师,主要从事智能反射面辅助无线网络中的波束 形成和干扰管理等研究,(Tel)86-17717150027(E-mail)2824133787@ qq. com。
  • 基金资助:
    黑龙江省自然科学基金资助项目(LH2022F004); 东北石油大学青年科学基金资助项目(2020QNQ-05) 

Joint Beamforming Design for IRS-Assisted C-IoT System

SUN Zhenxing1a, SHA Guohui2, NAN Chunping1b, XU Ziang2, LI Xuefeng2    

  1. 1a. Department of Electrical Information Engineering; 1b. Basic Department, Northeast Petroleum University-Qinhuangdao, Qinhuangdao 066004, China; 2. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-10-25 Online:2024-12-23 Published:2024-12-23

摘要: 针对多输入多输出(MIMO:Multiple Input Multiple Output)认知物联网(C-IoT: Cognitive Internet of Things) 系统中存在频谱效率低的问题,提出了一种基于智能反射面(IRS:Intelligent Reflecting Surface)辅助的交替迭代 的块坐标下降算法。 以主接收机处的干扰功率、次发射机处的发射功率和IRS处的单位模为约束条件,通过联 合优化次发射机处的主动波束形成和IRS处的被动波束形成最大化系统加权和速率。 将复杂的非凸优化问题 分解为子问题后,分别使用拉格朗日对偶法和逐次凸逼近法对子问题进行处理。 仿真结果表明,在多天线用户 场景下所提算法可以快速收敛,通过增加IRS反射元件的数量或正确部署IRS的位置可以有效提高C-IoT系统 的频谱效率。

关键词: 智能反射面, 认知物联网, 多输入多输出, 波束形成

Abstract: Aiming at the problem of low spectrum efficiency in MIMO(Multiple Input Multiple Output) C-IoT (Cognitive Internet of Things) systems, a block coordinate descent algorithm based on alternating iterative assisted by IRS(Intelligent Reflecting Surface) is proposed. System weighted sum rate is maximized by jointly optimizing active beamforming at secondary transmitter and passive beamforming at IRS, and is constrained by the interference power at the primary receiver, the transmit power at the secondary transmitter, and the unit mode at the IRS. After decomposing the complex non-convex optimization problem into subproblems, the subproblems are processed using the Lagrange Dual method and the Successive Convex Approximation method, respectively. The simulation results show that the proposed algorithm can converge quickly in a multi-antenna user scenario, and the spectrum efficiency of the C-IoT system can be effectively improved by increasing the number of IRS reflective elements or correctly deploying the location of the IRS. 

Key words: intelligent reflecting surface, cognitive internet of things, multiple input multiple output(MIMO), beamforming

中图分类号: 

  • TP929.5