吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 150-155.

• • 上一篇    下一篇

基于模糊数学理论的双通道数据关联融合算法

孙 洁   

  1. 西安外事学院 工学院, 西安 710077
  • 收稿日期:2023-06-12 出版日期:2025-02-24 发布日期:2025-02-24
  • 作者简介:孙洁(1983— ), 女, 西安人, 西安外事学院讲师, 主要从事随机分析研究, (Tel)86-15991629482(E-mail) lijnyfeng689@163. com。
  • 基金资助:
    国家社会科学基金资助项目(20CZZ024)

Association Fusion Algorithm of Dual Channel Data Based on Fuzzy Mathematics Theory

SUN Jie   

  1. Institute of Technology, Xi’an International University, Xi’an 710077, China
  • Received:2023-06-12 Online:2025-02-24 Published:2025-02-24

摘要: 针对在利用单一数据源的数据完成任务时数据会存在较大误差甚至可能出现数据缺失从而影响任务进度的问题, 提出基于模糊数学理论的双通道数据关联融合算法研究。 度量双通道数据的相关性, 并根据缺失数据预测流程, 预测出双通道数据中的缺失数据, 填充双通道数据集中缺失数据, 获取完整的双通道数据。 对双通道数据实施标准化处理, 利用主元分析法计算双通道数据与主成分之间相似度, 获取数据集中数据综合支持程度, 取得有效数据。 利用模糊数学理论, 对有效数据实施模糊化处理, 并计算数据模糊化结果与真实数据之间的贴近度, 确定数据融合权重, 以此实现双通道数据关联融合。 实验结果表明, 利用所提算法进行双通道数据关联融合, 在数据总数量达到 1 500 时, 综合评价指标值超过 9, 说明所提算法能提高双通道数据关联融合精度, 具有较好的双通道数据关联融合效果。

关键词: 模糊数学理论, 双通道数据, 关联融合算法, 标准化处理, 缺失数据填充

Abstract:

When using data from a single data source to complete tasks, there may be significant errors in the data, and there may even be data missing, which can affect the progress of the task. A dual channel data association and fusion algorithm based on fuzzy mathematics theory is proposed for this purpose. The correlation of dual channel data is measured and the missing data in the dual channel data is predicted according to the missing data prediction process. The missing data in the dual channel dataset is filled in to obtain complete dual channel data. The dual channel data is standardized, and the principal component analysis is used to calculate

the similarity between the dual channel data and the principal components, obtaining the comprehensive support level of the dataset, and obtain effective data. By using fuzzy mathematics theory, effective data is fuzzified, and the closeness between the fuzzification results and real data is calculated to determine the data fusion weight, in order to achieve dual channel data association and fusion. The experimental results show that using the proposed algorithm for dual channel data association fusion, when the total number of data reaches 1 500, the value of the comprehensive evaluation index exceeds 9, indicating that the proposed algorithm can improve the accuracy of dual channel data association fusion and has good dual channel data association fusion results.

Key words: fuzzy mathematics theory, dual channel data, association fusion algorithm, standardized processing, missing data filling

中图分类号: 

  • TP274