吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 711-716.

• • 上一篇    下一篇

基于神经网络的超分辨率图像噪声识别算法

魏亚明,李晓凡   

  1. 徐州市中心医院信息科,江苏徐州221000
  • 收稿日期:2023-07-27 出版日期:2025-08-15 发布日期:2025-08-14
  • 作者简介:魏亚明(1991— ), 男, 江苏徐州人, 徐州市中心医院中级工程师, 主要从事大数据、 神经网络研究, (Tel)86- 13785083958(E-mail)persist0405@163. com。
  • 基金资助:
    江苏省自然科学基金资助项目(BK2013573)

Super-Resolution Image Noise Recognition Algorithm Based on Neural Network

 WEI Yaming, LI Xiaofan   

  1. Information Department, Xuzhou Central Hospital, Xuzhou 221000, China
  • Received:2023-07-27 Online:2025-08-15 Published:2025-08-14

摘要: 针对在超分辨率处理过程中,低分辨率图像存在的噪声会被放大,导致超分辨率图像出现失真的问题, 提出了基于神经网络的超分辨率图像噪声识别方法。采用神经网络中的激活函数,确定峰值信噪比。 联合噪声数据集合与超参系数, 获取残差值, 结合噪声信息分布密度, 实现超分辨率图像噪声识别。实验结果表明,所提方法的超分辨率图像的清晰度较高, 具有较好的识别效果, 最高峰值信噪比为50 dB, 表明利用所提方法能提高图像质量。

关键词: 神经网络, 超分辨率图像, 噪声识别, 残差值, 峰值信噪比, 超参系数, 图像清晰度

Abstract:

In the process of super-resolution processing, the noise inherent in low resolution images will be amplified, resulting in distortion of super-resolution images. To this end, a super-resolution image noise recognition method based on neural networks has been proposed. The Activation function in the neural network is used to determine the peak signal to noise ratio. By combining the noise data set and hyperparameter coefficients, residual values are obtained, and combined with the noise information distribution density, super- resolution image noise recognition is achieved. The experimental results show that the proposed method has high clarity and good recognition performance in super-resolution images, with a maximum peak signal-to-noise ratio of 50 dB, indicating that the use of the proposed method can improve image quality.

Key words: neural network, super resolution images, noise identification, residual value, peak signal-to-noise ratio, hyper parameter coefficient, image clarity

中图分类号: 

  • TP391