吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 880-886.

• • 上一篇    下一篇

异构计算下的电力系统用户侧净负荷预测算法

梁凌宇1,2, 黄文琦2, 赵翔宇2, 曹 尚2, 张焕明2   

  1. 1. 清华大学 微电子学与固体电子学院,北京100084;2. 南方电网数字电网研究院有限公司技术研发中心,广州510700
  • 收稿日期:2023-09-07 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:梁凌宇(1979— ), 男, 广西梧州人, 清华大学高级工程师, 主要从事电力数字化研究, (Tel)86-15900223714(E-mail)梁凌宇(1979—摇 ), 男, 广西梧州人, 清华大学高级工程师, 主要从事电力数字化研究, (Tel)86-15900223714(E-mail) Liangln1979@ Yeah. net。
  • 基金资助:
    南方电网数字电网研究院有限公司基金资助项目(2100002022030102JF00036)

Load Prediction Algorithm of User Side Net for Power Systems under Heterogeneous Computing

 LIANG Lingyu1,2, HUANG Wenqi2, ZHAO Xiangyu2, CAO Shang2, ZHANG Huanming2    

  1. 1. Microelectronics and Solid State Electronics, Tsinghua University, Beijing 100084, China; 2. Technology R&D Center, Southern Power Grid Digital Grid Research Institute Company Limited, Guangzhou 510700, China
  • Received:2023-09-07 Online:2025-08-15 Published:2025-08-15

摘要: 针对原始电力系统用户侧净负荷序列混乱问题,为精准预测电力系统用户侧负荷数据的变化情况,提出 一种异构计算下的电力系统用户侧净负荷预测算法。分析带有噪声的电力系统用户侧净负荷数据,实施二 进制小波变换,经设定门限值与确定估计信号,预处理电力系统用户侧净负荷数据;应用经验模态分解方法, 进行了电力系统用户侧净负荷分解,使用扩展卡尔曼滤波(EKF:Extended Kalman Filter)以及核函数极限学习机(KELM: Kernel Extreme Learning Machine)两种存在差异的算法, 建立基于EKF-KELM 的电力系统用户侧净负荷预测函数,异构计算IMF(Intrinsic Mode Function)分量的最优参数, 引入核函数, 叠加全部预测值, 得到异构计算下的电力系统用户侧净负荷预测结果。实验结果表明,所提算法获取的电力系统用户侧净负荷预测值和真实值基本吻合,均方根误差和平均绝对误差均低,有效减少电力系统用户侧净负荷预测耗时,可以获取 高准确率的电力系统用户侧净负荷预测结果。

关键词: 异构计算, 电力系统, 用户侧, 净负荷预测

Abstract: The original user side net load sequence of the power system is chaotic. In order to accurately predict the changes in user side load data of the power system, a heterogeneous computing based user side net load prediction algorithm is proposed. The user side net load data of the power system is analyzed with noise, the binary wavelet transform is expanded, and the user side net load data of the power system is preprocessed by setting threshold values and determining estimated signals. The empirical mode decomposition method is applied to decompose the user side net load of the power system. Two different algorithms, EKF(Extended Kalman Filter) and KELM(Kernel Extreme Learning Machine) are used to establish a power system user side net load prediction function based on EKF-KELM. The optimal parameters for IMF(Intrinsic Mode Function) components are calculated isomerically, and a kernel function is introduced to overlay all predicted values. The user side net load prediction results of the power system are obtained under heterogeneous computing. The experimental results show that the predicted value of the power system user side net load obtained by the proposed algorithm is basically consistent with the true value, with low root mean square error and average absolute error. This effectively reduces the time required for power system user side net load prediction and can obtain high-precision power system user side net load prediction results. 

Key words: heterogeneous computing, power system, user side, net load forecast

中图分类号: 

  • TP399