吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1033-1042.

• • 上一篇    下一篇

基于大模型辅助深度强化学习的配电网区域电压优化控制

王义春, 程崇阳, 闫丽梅   

  1. 1. 国网黑龙江省电力有限公司勃利县供电公司,黑龙江七台河154500; 2. 东北石油大学电气信息工程学院,黑龙江大庆163318
  • 收稿日期:2025-02-25 出版日期:2025-09-28 发布日期:2025-11-19
  • 作者简介:王义春(1973— ), 男, 山东莒南人, 国网黑龙江省电力有限公司高级工程师,主要从事配电网优化控制研究,(Tel)86- 15636592000(E-mail)wycjdxb@163. com。
  • 基金资助:
    黑龙江省自然科学基金资助项目(LH2019E016)

Optimization Control of Regional Voltage in Distribution Network Based on Large Language Model-Assisted Deep Reinforcement Learning

WANG Yichun1, CHENG Chongyang2, YAN Limei2   

  1. 1. Boli County Power Supply Company, State Grid Heilongjiang Electric Power Company Limited, Qitaihe 154500, China; 2. College of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2025-02-25 Online:2025-09-28 Published:2025-11-19

摘要: 针对现有深度强化学习方法在训练智能体时,常因采集数据泛化性不足导致智能体应对多变运行条件时泛化能力受限的问题,首先提出一种基于大模型辅助深度强化学习的配电网区域电压优化控制策略,将大模型技术与深度强化学习相结合;其次,通过提示工程引导大语言模型(LLM:Large Language Model)生成用于深度强化学习智能体训练的定制化数据集,构建多智能体协同决策框架;然后,基于分布式部分可观测马尔可夫过程建模动态控制问题,在减少对现实数据依赖的同时提升智能体泛化能力;最后,在改进的IEEE33节点 系统上验证了所提控制策略的有效性。 结果表明, 电压偏差与网络损耗分别降低60.82%49.91%, 并在多种运行条件下表现出较强鲁棒性。

关键词: 深度强化学习, 大语言模型, 电压控制, 多智能体, 数据增强, 数据驱动

Abstract: With the continuous integration of large-scale distributed power sources into distribution networks, distribution networks face many challenges in terms of safety, stability and economy. And the existing deep reinforcement learning methods often exhibit limitations in generalization ability when training agents to cope with changing operating conditions due to insufficient generalization of collected data. Therefore a distribution network regional voltage optimization control strategy based on large language model-assisted deep reinforcement learning is proposed, combining large language model technology with deep reinforcement learning. Secondly, by guiding large language models to generate customized datasets for deep reinforcement learning agent training through prompt engineering, a multi-agent collaborative decision-making framework is constructed. Then, based on distributed partially observable Markov processes, dynamic control problems are modeled to reduce dependence on real-world data while improving agent generalization ability. Finally, the effectiveness of the proposed control strategy is verified on the improved IEEE 33-node system, with voltage deviation and network loss reduced by 60. 82% and 49.91%, respectively, exhibiting strong robustness under various operating conditions.

Key words: deep reinforcement learning, large language model, voltage control, multi-agent, dataaugmentation, data-driven

中图分类号: 

  • TP3