吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1067-1077.

• • 上一篇    下一篇

基于语义分割的多目标小间隙煤矸识别方法

王妍玮a,b, 陶文彬a,b, 陈凯云a,b, 孟祥林a,b 
  

  1. 黑龙江科技大学a. 机械工程学院;b. 黑龙江省光学三维测量与检测重点实验室,哈尔滨150022
  • 收稿日期:2024-09-29 出版日期:2025-09-28 发布日期:2025-11-20
  • 通讯作者: 陈凯云(1974— ), 男, 江苏常州人, 黑龙江科技大学教授, 博士, 博士生导师, 主要从事机器人技术、 先进制造技术与装备研究, (Tel)86-13796660299 (E-mail)chenkaiyun@ hrbeu. edu. cn E-mail:chenkaiyun@ hrbeu. edu. cn
  • 作者简介:王妍玮(1982— ), 女, 黑龙江宁安人, 黑龙江科技大学教授, 博士, 主要从事机器视觉与智能计算、 机电设备测控与 故障诊断研究,(Tel)86-18846929808(E-mail)wangyanwei@ usth. edu. cn
  • 基金资助:
    2023 年度黑龙江省重点研发计划基金资助项目(GA23A910); 黑龙江省双一流冶学科协同创新成果基金资助项目 (LJGXCG2023-012)

Coal Gangue Recognition Method of Multi-Objective Small Gap Based on Semantic Segmentation

 WANG Yanweia,b, TAO Wenbina,b, CHEN Kaiyuna,b, MENG Xianglina,b   

  1. a. School of Mechanical Engineering; b. Heilongjiang Provincial Key Laboratory of Optical 3D Measurement and Detection, Heilongjiang University of Science & Technology, Harbin 150022, China
  • Received:2024-09-29 Online:2025-09-28 Published:2025-11-20

摘要: 在实际选矸场景中,煤与矸石紧密接触,机械爪难以精确抓取矸石,为提高复杂工况下的机械爪抓取可靠性, 提出了一种基于语义分割的多目标小间隙煤矸识别方法。 使用FCN(FullyConvolutional Networks)算法对煤矸石进行识别,并对FCN进行改进,添加FPN(Feature Pyramid Network)模块和采用Dice Loss 替换原交叉熵损失函数。 首先对采集的1202张初始图像使用labelme对煤矸石图像进行标注, 采用限制对比度自适应直方图均衡化算法(CLAHE:Contrast Limited Adaptive Histogram Equalization)对煤矸石图像进行增强; 然后通过对比试验, 分析了不同语义分割算法和迁移学习策略在煤矸图像分割任务中的表现。 实验结果表明,采用ResNet50 作为特征提取器的全卷积神经网络FCN-ResNet50-FPN的识别性能最佳, 精确率、 召回率、 F1 分数、 平均交并比分别为95.0%95.4%95.2%90.9%。 经迁移学习后, FCN-ResNet50-FPN 的识别性能得到明显提升, 改善了小间隙处识别,为选矸机器人精确抓取提供了可靠信息。

关键词: 多目标, 煤矸识别, 语义分割, 迁移学习

Abstract: In the coal gangue sorting scene, coal and gangue are closely intertwined, making it challenging for the mechanical claw to accurately grasp gangue. To enhance grasping reliability under complex conditions, a multi-objective small-gap coal gangue recognition method based on semantic segmentation is proposed. The FCN (Fully Convolutional Networks) algorithm is improved by integrating the FPN (Feature Pyramid Network) module and replacing the cross-entropy loss with Dice Loss. A total of 1 202 coal gangue images are annotated using Labelme, and enhanced with the CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm. The performance of various semantic segmentation algorithms and transfer learning strategies are analyzed by comparative experiment. Results show that the FCN-ResNet50-FPN model, with ResNet50 as the feature extractor, achieved a precision of 95. 0%, a recall of 95. 4%, an F1 score of 95. 2%, and a mIoU(mean Intersection over Union) of 90. 9%. Transfer learning further improves recognition, enhances small-gap detection and provides reliable data for precise coal gangue sorting robot operations. 

Key words: multi-objective, coal-gangue identification, semantic segmentation, transfer learning 

中图分类号: 

  • TP39