吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1111-1118.

• • 上一篇    下一篇

基于自适应 K-Means 算法的遥感图像聚类优化方法 

曲小纳   

  1. 西安思源学院商学院,西安710038
  • 收稿日期:2024-01-21 出版日期:2025-09-28 发布日期:2025-11-20
  • 作者简介:曲小纳(1981— ), 女, 河南周口人, 西安思源学院副教授, 主要从事大数据研究, (Tel)86-18991843681(E-mail) 18991843681@163. com。
  • 基金资助:
    陕西省十四五冶教育科学规划2022年度课题基金资助项目(SGH22Y1867) 

Clustering Optimization Method of Remote Sensing Image Based on Adaptive K-means Algorithm 

QU Xiaona   

  1. Business School, Xi’an Siyuan University, Xian 710038, China
  • Received:2024-01-21 Online:2025-09-28 Published:2025-11-20

摘要: 针对遥感图像聚类去雾处理效果差, 导致图像聚类的聚类精度和Kappa系数较低、 时间较长的问题, 提出了一种基于自适应K-means算法的遥感图像聚类优化方法。 首先,结合暗通道先验估计和颜色线先验估计对遥感图像进行去雾处理;其次,计算去雾后遥感图像的灰度共生矩阵,并获取纹理特征;最后,采用蜂群算法对K-means 算法实施优化, 利用优化后的自适应K-means算法根据纹理特征, 实现遥感图像的聚类优化。 实验结果表明,所提方法可有效消除遥感图像中的云雾,图像细节信息显示清晰,在聚类精度、Kappa系数和聚类时间均表现出良好的性能,聚类精度达到94.9%,Kappa系数为0.97, 聚类时间仅为0.36 s

关键词: 遥感图像, K-means算法,  蜂群算法,  图像去雾,  聚类优化 

Abstract: Due to the poor defogging effect of remote sensing image clustering, the clustering accuracy and Kappa coefficient of image clustering are low and the time is long. In order to solve these problems, a new clustering optimization method remote sensing image based on adaptive K-means algorithm is proposed. Firstly, dark channel prior estimation and color line prior estimation are used to de-fog remote sensing images. Secondly, the gray co-occurrence matrix of the remote sensing image after fog removal is calculated, and the texture features are obtained. Finally, the colony algorithm is used to optimize the K-means algorithm, and the optimized adaptive K-means algorithm is used to realize the clustering optimization of remote sensing images according to texture features. The experimental results show that the proposed method can effectively eliminate cloud and fog in remote sensing images, and the image details are clearly displayed. The proposed method has good performance in terms of clustering accuracy, Kappa coefficient and clustering time. The clustering accuracy reaches 94. 9%, the Kappa coefficient is 0. 97, and the clustering time is 0.36 s. This method has certain validity. 

Key words: remote sensing images, K-means algorithm, bee colony algorithm, image defogging, cluster optimization

中图分类号: 

  • TP391