吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1138-1143.

• • 上一篇    下一篇

融合多模态信息的跨媒体知识文本分类算法 

刘 欢1, 李宏亮2, 陈维汉2   

  1. 1. 西安电子科技大学通信工程学院,西安710071;2. 南方电数字企业科技(广东)有限公司 行政人资事业部,广州510700
  • 收稿日期:2023-11-16 出版日期:2025-09-28 发布日期:2025-11-20
  • 作者简介:刘欢(1985— ), 女, 陕西咸阳人, 西安电子科技大学工程师, 主要从事通信工程研究, (Tel)86-15914386081(E-mail) lx7845545@ yeah. net。
  • 基金资助:
    南方电数字企业科技有限公司基金资助项目(20210005406554)

Text Classification Algorithm of Cross Media Knowledge for Integrating Multimodal Information

LIU Huan1,2, LI Hongliang2, CHEN Weihan2   

  1. 1. School of Communication Engineering, Xidian University, Xi’an 710071, China; 2. Administrative Human Resources Division, Southern Power Grid Digital Enterprise Technology Guangdong Company Limited, Guangzhou 510700, China
  • Received:2023-11-16 Online:2025-09-28 Published:2025-11-20

摘要: 针对跨媒体知识文本分类涉及多种类型的数据,并且其间的差异性和异构性增加了分类的复杂性,使 大量跨媒体知识文本中难以精确寻找资料的问题,提出融合多模态信息的跨媒体知识文本分类算法。 利用词频-逆文档频率(TF-IDF: Term Frequency-Inverse Document Frequency)算法, 过滤处理文本中的停用词, 提取文本特征,并将其与图像文本特征相融合; 利用朴素贝叶斯分类器,判断跨媒体知识文本类别的归属,实现知识文本分类。 通过实验分析结果表明,所提文本分类算法显著提升了跨媒体知识文本分类的性能和效率,使分类结果更加准确,查准率高达95.12%,漏检率维持在10%以下。

关键词: 文本分类, TF-IDF算法, 双线性池化, 朴素贝叶斯分类器

Abstract: Text classification of transmedia knowledge involves many types of data, such as text, image, video, etc. The heterogeneity and heterogeneity of data increase the complexity of classification. Aiming at the problem that it is difficult to find accurate data in a large number of cross-media knowledge texts, an algorithm of cross- media knowledge text classification based on multi-modal information is proposed. The TF-IDF(Term Frequency- Inverse Document Frequency) algorithm is used to filter the stop words in the processing text, extract the text features, and integrate them with the image text features. By using naive Bayes classifier, the classification of cross-media knowledge text is determined and realized. Experimental analysis shows that the proposed text classification algorithm significantly improves the performance and efficiency of cross-media knowledge text classification, and makes the classification results more accurate, with the accuracy rate up to 95. 12% and the missing rate remaining below 10%.

Key words: text classification, term frequency-inverse document frequency ( TF-IDF) algorithm, bilinear pooling, naive bayesian classifier

中图分类号: 

  • TP391