吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (4): 430-438.

• • 上一篇    下一篇

基于精英高斯学习的改进鱼群粒子群混合算法

康朝海1,王博宇1,杨永英2
  

  1. 1. 东北石油大学 电气信息工程学院,黑龙江 大庆 163318; 2. 大庆油田矿区服务事业部 物业管理一公司,黑龙江 大庆 163000
  • 出版日期:2018-07-24 发布日期:2019-01-18
  • 作者简介:康朝海( 1976— ) ,男,黑龙江望奎人,东北石油大学副教授,硕士生导师,主要从事智能控制、模式识别等研究,( Tel)86-13796596331( E-mail) kangchaohai@126. com。
  • 基金资助:
    国家自然科学基金资助项目( 51404073; 51404074) ; 国家自然科学基金优秀青年科学基金资助项目( 61422301) ; 黑龙江省自然科学基金资助项目( 青年) ( QC2017043) ; 黑龙江省博士后科研启动资金资助项目( LBH-Q12143)

Improved Hybrid Algorithm with Fish Swarm-Particle Swarm Optimization Based on Elite Gaussian Learning#br#

KANG Chaohai1,WANG Boyu1,YANG Yongying2   

  1. 1. School of Electrical Engineering and Information,Northeast Petroleum University,Daqing 163318,China;
    2. Division of the Property Management Company,Daqing Oilfield Mining Services,Daqing 163000,China
  • Online:2018-07-24 Published:2019-01-18

摘要: 为提高算法在高维函数上的寻优性能,提出改进鱼群粒子群混合算法。该算法将鱼群算法全局搜索性能好与粒子群算法局部搜索性能强的优点相结合,在寻优初始阶段采用鱼群算法获得最优群体,在后期用粒子群算法实现精搜索。针对初始种群随意性大、分布不均的问题,通过均匀初始化,优化初始种群的分布; 并对算法全局搜索方向性差、效率低的问题,采用仿照蛙跳算法的分组方式对种群进行分组,同时对组内优秀个体和一般个体使用不同搜索策略,提高搜索的目的性和效率。引入改进的精英高斯学习,从而提升最终结果的精度。利用该算法对6 个标准函数寻优并与其他算法比较,结果表明,该算法的改进有效且性能优于其他算法。

关键词: 鱼群粒子群混合算法, 均匀初始化, 分组策略, 精英高斯学习

Abstract: In order to improve the searching performance of the algorithm in finding high-dimensional functions,an improved particle swarm optimization algorithm is proposed. This algorithm combines the good global search performance of AFSA ( Artificial Fish Swarm Algorithm) with the advantage of strong local search performance of PSO ( Particle Swarm Optimization) . In initial period,AFSA was used to obtain the optimal population,and PSO was used to achieve the fine search in the later stage. In order to solve the problem of arbitrary initial population and uneven distribution,uniform initialization was used to optimize the distribution. Aimed at the poor global search direction and low efficiency of the algorithm,grouping strategy based on SFLA ( Shuffled Frog Leaping Algorithm) was adopted,and different search strategies for good individuals and other ordinary individuals in the group were used to improve the purpose and efficiency of search. Because PSO is prone to stagnation and results in low accuracy of the final result,the improved elite Gaussian learning was introduced to enhance the accuracy of the final result. The proposed algorithm is used to solve function optimization on six standard functions and compared with other algorithms,the results show the improvement is effective and superior to other algorithms.

Key words: hybrid algorithm with fish swarm-particle swarm optimization, uniform initialization, grouping strategy, elite gaussian learning

中图分类号: 

  • TP18