吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (4): 439-443.

• • 上一篇    下一篇

改进Q-Learning 算法在路径规划中的应用

高乐,马天录,刘凯,张宇轩   

  1. 吉林大学 仪器科学与电气工程学院,长春130012
  • 出版日期:2018-07-24 发布日期:2019-01-18
  • 作者简介:高乐( 1981—) ,女,长春人,吉林大学工程师,主要从事视觉检测技术研究,( Tel) 86-13578799626( E-mail) gaole@ jlu. edu.cn。
  • 基金资助:
    吉林省重点科技攻关计划基金资助项目( 20170204052GX) ; 大学生创新创业训练基金资助项目( 2016A65288)

Application of Improved Q-Learning Algorithm in Path Planning

GAO Le,MA Tianlu,LIU Kai,ZHANG Yuxuan   

  1. College of Instrumentation and Electrical Engineering,Jilin University,Changchun 130012,China
  • Online:2018-07-24 Published:2019-01-18

摘要: 针对Q-Learning 算法在离散状态下存在运行效率低、学习速度慢等问题,提出一种改进的Q-Learning 算法。改进后的算法在原有算法基础上增加了一层学习过程,对环境进行了深度学习。在栅格环境下进行仿真实验,并成功地应用在多障碍物环境下移动机器人路径规划,结果证明了算法的可行性。改进Q-Learning 算法以更快的速度收敛,学习次数明显减少,效率最大可提高20%。同时,该算法框架对解决同类问题具有较强的通用性。

关键词: 路径规划, 改进Q-Learning 算法, 强化学习, 栅格法, 机器人

Abstract: Aiming at the problem of low efficiency and slow learning in discrete state of Q-Learning algorithm.The improved algorithm adds a learning process on the basis of the original algorithm,and makes deep learning of the environment.An improved Q-Learning algorithm is proposed to simulate in grid environment. It has been successfully applied to the path planning of a mobile robot in a multi barrier environment,and the results prove the feasibility of the algorithm. The improved Q-Learning algorithm can converge faster,reduce the number of learning,and increase the efficiency by 20%. The framework of the algorithm has strong generality for solving the same kind of problems.

Key words: path planning, improved Q-Learning algorithm, reinforcement learning, grid method, robot

中图分类号: 

  • TP391