吉林大学学报(信息科学版) ›› 2019, Vol. 37 ›› Issue (4): 417-425.

• • 上一篇    下一篇

基于卷积神经网络的手绘草图识别

印桂生,严雪,王宇华,张震   

  1. 哈尔滨工程大学计算机科学与技术学院,哈尔滨150001
  • 出版日期:2019-07-24 发布日期:2019-12-16
  • 通讯作者: 王宇华( 1977— ) ,男,黑龙江密山人,哈尔滨工程大学讲师,博士,主要从事高性能计算、人工智能研究,( Tel) 86-18903618620( E-mail) wangyuhua@ hrbeu. edu. cn。 E-mail:wangyuhua@ hrbeu. edu. cn
  • 作者简介:印桂生( 1964— ) ,男,江苏泰兴人,哈尔滨工程大学教授,博士,主要从事数据挖掘、虚拟现实研究,( Tel) 86- 13351019933( E-mail) yinguisheng@ hrbeu. edu. cn; 通讯作者: 王宇华( 1977— ) ,男,黑龙江密山人,哈尔滨工程大学讲师,博士,主要从事高性能计算、人工智能研究,( Tel) 86-18903618620( E-mail) wangyuhua@ hrbeu. edu. cn。
  • 基金资助:
    国家自然科学基金资助项目( 61872105)

Sketch Recognition Based on Convolution Neural Network

YIN Guisheng,YAN Xue,WANG Yuhua,ZHANG Zhen   

  1. College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China
  • Online:2019-07-24 Published:2019-12-16

摘要: 针对目前手绘草图识别难度大,识别准确率低且主要以手工提取特征为主,提出一种新的卷积神经网络结构DCSN( Deeper-CNN-Sketch-Net) 进行手绘图像识别。DCSN 模型是根据手绘草图的特点进行设计,如在首层采用了更大的卷积核获取草图的结构信息和更小的步长尽可能多保留特征信息,通过增加网络层数加深网络深度等。为进一步提高识别准确率,针对手绘草图的特点提出了两种新的数据增强方法,小图形缩减策略和尾部移除策略增加数据集的多样性,并利用扩充的数据集训练DCSN 网络。经实验验证,所提出的模型在目前最大的手绘图像数据集上可以取得70. 5% 的识别准确率,超过了目前存在的几种主流的手绘草图识别方法。

关键词: 手绘草图识别, 卷积神经网络, 网络模型, 数据增强

Abstract: Considering that the difficulty of free-hand sketch recognition,the low recognition accuracy and handcrafted features,we propose a new CNN ( Convolutional Neural Networks) structure DCSN ( Deeper-CNNSketch-Net) which is specifically designed to accommodate the unique characteristics of free-hand sketch. Firstly we use a larger convolution kernel in the first layer to obtain the structural information of the sketch. Then we use smaller stride in the first layer to keep the feature information. At last,we increase the network layers to deepen the network depth. In order to improve the recognition accuracy,we propose two new data enhancement methodsmall graphics reduction strategy and tail removal strategy to increase the diversity of data sets,then we use the extended data sets to train the DCSN network. The experimental results show that our model can achieve 70. 5% recognition accuracy on the largest free-hand image dataset,which has a good performance than the existing freehand sketch recognition methods.

Key words: free-hand sketch recognition, convolutional neural network, network model, data augmentation

中图分类号: 

  • TP391. 41