吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (5): 578-587.
摘要: 为提升基本教学优化算法的搜索能力, 通过融合量子计算原理, 提出了一种量子教学优化算法。 该方法采用教师自学和学生向教师学两种学习机制搜索全局最优解。 个体采用量子比特编码, 搜索过程在 Bloch 球面上进行, 个体的更新通过量子比特的绕轴旋转实现, 然后将其解码为量子比特的 Bloch 球面坐标。 由于该方法将基本教学算法中每维变量的搜索都扩展到 Bloch 球面进行, 可使搜索过程更为精细, 从而加强了对解空间的遍历性。 不同维度标准函数极值优化的仿真结果表明, 此方法的寻优能力不仅超过基本教学优化算法, 同时也超过其他经典群智能优化算法, 验证了将量子计算的某些机制和智能优化相融合可提升其优化性能。
中图分类号: