wavelet threshold denoising,empirical mode decomposition,variable mode decom-posetion;leakage acoustic signal,"/> VMD-Wavelet 联合去噪算法研究与应用

吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (5): 588-594.

• • 上一篇    下一篇

VMD-Wavelet 联合去噪算法研究与应用

阚玲玲1a, 高丙坤1a, 梁洪卫1a, 路敬祎1b, 王喜良2   

  1. 1. 东北石油大学 a. 电气信息工程学院; b. 黑龙江省网络与智能控制重点实验室, 黑龙江 大庆 163318;2. 上汽通用汽车有限公司 南厂冲压车间, 山东 烟台 264006
  • 收稿日期:2020-04-20 出版日期:2020-09-24 发布日期:2020-10-23
  • 作者简介:阚玲玲(1981— ), 女, 吉林公主岭人, 东北石油大学副教授, 博士研究生, 主要从事油气信息处理、 油田物联网等研究,(Tel)86-459鄄6503272(E-mail)kll@ nepu.edu.cn
  • 基金资助:
    黑龙江省自然科学基金资助项目(LH2020F005)

VMD-Wavelet Denoising Algorithm and Its Application in Acoustic Signal Processing of Oil and Gas Pipeline Leakage

KAN Lingling1a, GAO Bingkun1a, LIANG Hongwei1a, LU Jingyi1b, WANG Xiliang2   

  1. 1a. College of ElectricalEngineering and Information; 1b. Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China;2. Stamping Workshop of South Factory, Shanghai Automotive Industry Corp-General Motors Company, Yantai 264006, China)
  • Received:2020-04-20 Online:2020-09-24 Published:2020-10-23

摘要: 为解决天然气管道运行过程中采集到的泄漏声波信号含有大量噪声的问题, 通过研究小波、 经验模态分解、 变模态分解等常见去噪算法, 分析了泄漏声波信号的特点, 将改进小波阈值去噪和变模态分解去噪相结合, 提出了变模态分解-小波变换(VMD-Wavelet: Variable Mode Decomposition-Wavelet) 联合去噪算法。 利用该算法对典型信号进行去噪运算仿真, 结果表明, 该联合去噪算法性能优于常见算法。 最后, 将 VMD-Wavelet 联合去噪算法应用于实际采集的油气管道泄漏声波信号去噪处理, 研究发现, 该去噪算法对强背景噪声下的泄漏声波信号能取得很高的信噪比改善和很小的均方误差。

关键词: 小波阈值去噪, 经验模态分解, 变模态分解, 泄漏声波信号

Abstract: The leakage acoustic signal of oil and gas pipeline contains large amount of noise. The common denoising algorithms such as wavelet transform, empirical mode decomposition and variable mode decomposition are studied. According to the characteristics of the leakage acoustic signal, referring to the idea of Wavelet-EMD(Wavelet-Empirical Mode Decomposition) algorithm, combining the improved wavelet threshold denoising and variable mode decomposition, a VMD-Wavelet (Variable Mode Decomposition-Wavelet) algorithm is proposed.Four typical signals with noise are used to verify that VMD-wavelet joint denoising algorithm is superior to other common denoising algorithms in output SNR (Signal Noise Ratio) and minimum mean square error. Finally, the VMD-Wavelet algorithm is applied to the actual pipeline leakage acoustic signal denoising. It is found that the VMD-Wavelet algorithm can achieve a high signal-to-noise ratio and a small mean square error for the pipeline leakage acoustic signal under strong background noise.

Key words: wavelet threshold denoising')">wavelet threshold denoising, empirical mode decomposition, leakage acoustic signal')">variable mode decom-posetion;leakage acoustic signal

中图分类号: 

  • TP301. 6