含噪语音信号,模态分解, 特征提取, 重构," /> 含噪语音信号,模态分解, 特征提取, 重构,"/> 基于改进经验模态分解的语音信号特征提取法

吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (3): 288-294.

• • 上一篇    下一篇

基于改进经验模态分解的语音信号特征提取法

王秀芳a, 郭淞赫a, 崔翔宇b , 杨丹迪a   

  1. 东北石油大学 a. 电气信息工程学院; b. 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2020-10-15 出版日期:2021-05-24 发布日期:2021-05-25
  • 作者简介:王秀芳(1967— ), 女, 河北景县人, 东北石油大学教授, 主要从事语音信号特征提取研究, ( Tel) 86-18845963335 (E-mail)wxfdqpi@163.com

Feature Extraction Method for Speech Signals Based on Improved Empirical Modal Decomposition

WANG Xiufanga, GUO Songhea, CUI Xiangyub , YANG Dandia   

  1. a. School of Electrical Engineering and Information; b. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2020-10-15 Online:2021-05-24 Published:2021-05-25

摘要: 针对语音信号特征提取在处理含噪语音信号时识别率低, 抗干扰性差等问题, 提出了一种基于改进的经验模态分解算法对含噪语音信号进行特征提取。 该方法通过对含噪声语音信号分解分类并对两类模态分量分别处理再进行重构和特征提取, 解决了目前大多数语音信号特征提取过程会滤掉部分原信号问题, 在有效地消除了噪声信号的基础上, 尽可能多地保存原信号, 进而使系统的识别性能得到明显提高。 实验结果表明, 该算法在不添加噪声的情况下可以达到 95. 5% 识别率, 在添加不同比例噪声时, 相比于几种传统算法, 该算法依然保持高识别率。

关键词: font-family:FZSSK--GBK1-0, color:#000000, 含噪语音信号">含噪语音信号font-family:E-BZ, color:#000000, ')">">, font-family:FZSSK--GBK1-0, color:#000000, 模态分解">模态分解font-family:E-BZ, color:#000000, ')">">, font-family:FZSSK--GBK1-0, color:#000000, 特征提取">特征提取font-family:E-BZ, color:#000000, ')">">, font-family:FZSSK--GBK1-0, color:#000000, 重构">重构font-family:E-BZ, color:#000000, ')">">

Abstract: In order to solve the problems such as low recognition rate and poor anti-interference ability of speech signal feature extraction, a method of feature extraction based on improved empirical modal decomposition algorithm is presented. Classification by the method including noise speech signal decomposition, two types of modal component processing, reconstruction and feature extraction, respectively, to solve present most speech signal feature extraction process will filter out part of the original signal, on the basis of effectively eliminate the noise signal, as much as possible to save the original signal. And the recognition performance of system is improved obviously. Experimental results show that the proposed algorithm can achieve a 95. 5% recognition rate without adding noise. Compared with several traditional algorithms, this algorithm maintains a high recognition rate when adding different proportion of noise.

Key words: noisy speech signal, mode decomposition, feature extraction, reconsitution

中图分类号: 

  • TP39