多无人机  协同航迹规划 ,NSGA-Ⅲ算法 ,势场蚁群算法," /> 多无人机  协同航迹规划 ,NSGA-Ⅲ算法 ,势场蚁群算法,"/> 基于 NSGA-Ⅲ算法的多无人机协同航迹规划

吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (3): 295-302.

• • 上一篇    下一篇

基于 NSGA-Ⅲ算法的多无人机协同航迹规划

袁梦顺, 陈 谋, 吴庆宪   

  1. 南京航空航天大学 自动化学院, 南京 210016
  • 收稿日期:2020-11-13 出版日期:2021-05-24 发布日期:2021-05-25
  • 通讯作者: 陈谋(1975— ), 男, 四川南充人, 南京航空航天大学教授, 博士生导师, 主要从事非线性系统控制、智能控制和飞行控制等研究, (Tel)86-13813851435 (E-mail)chenmou@nuaa.edu.cn
  • 作者简介:袁梦顺(1996— ),男,安徽亳州人,南京航空航天大学硕士研究生,主要从事航迹规划研究, (Tel) 86-18251815789 (E-mail)18251815789@163.com
  • 基金资助:
    国家自然科学基金应急管理基金资助项目(61751219); 装备预研中国电科联合基金资助项目( 6141B08231110a); “十三五冶装备预研基金资助项目(61425040104)

Cooperative Path Planning for Multiple UAVs Based on NSGA-Ⅲ Algorithm

YUAN Mengshun, CHEN Mou, WU Qingxian   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2020-11-13 Online:2021-05-24 Published:2021-05-25

摘要: 当多架无人机协同作战时, 需要进行协同航迹规划, 以提升任务成功率。 将协同航迹规划中的约束转换为多个目标后, 对 NSGA(Non-Dominated Sorting Genetic Algorithm)-Ⅲ算法与势场蚁群算法进行融合设计。 算法首先对地图进行势场构建, 使距离障碍物较近的节点不易被选择, 并且引导搜索方向。 然后对航迹代价、空间协同约束和时间协同约束进行数学建模, 转换为数值指标, 并设置为 NSGA-Ⅲ算法的多个目标。 对 NSGA-Ⅲ算法设计了临界层选择方法和进化算法等。 最后在二维和三维栅格地图中, 改进 NSGA-Ⅲ算法利用各种群为各无人机搜索出期望的航迹。 仿真实验表明, 规划所得到的各无人机航迹安全且代价较小。

关键词: 多无人机  协同航迹规划 ')">多无人机  协同航迹规划 , 算法 ')">NSGA-Ⅲ算法 , 势场蚁群算法')">势场蚁群算法

Abstract: When multiple UAVs (Unmanned Aaerial Vehicle) fight in coordination, cooperative path planning is needed to improve mission success rate. After transforming constraints of cooperative path planning into multiple targets, the fusion design of NSGA(Non-Dominated Sorting Genetic Algorithm)-Ⅲ algorithm and potential field ant colony algorithm are carried out. Firstly, the potential field of the map is constructed to make the nodes close to the obstacles difficult to be selected, and to guide the search direction. Then, the path cost, spatial cooperative constraint and temporal cooperative constraint are modeled and converted into numerical indicators, and are set as multiple targets of NSGA-Ⅲ algorithm. For NSGA-Ⅲ algorithm, critical layer selection method and evolutionary algorithm are designed. Finally, in two-dimensional and three-dimensional grid map, the improved NSGA-Ⅲ algorithm uses each population to search the desired path for each UAV. Simulation results show that the UAV paths obtained by planning are safe and cost less.

Key words: multiple unmanned aerial vehicle ( UAVs), cooperative path planning, non-dominated sorting genetic algorithm-Ⅲ (NSGA-Ⅲ) algorithm, potential field ant colony algorithm

中图分类号: 

  • TP18