表面肌电信号,多路卷积神经网络,手势识别,MYO 手环," /> 表面肌电信号,多路卷积神经网络,手势识别,MYO 手环,"/> 基于多路卷积神经网络的手势识别方法

吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (3): 303-309.

• • 上一篇    下一篇

基于多路卷积神经网络的手势识别方法

吴雨浩, 王从庆   

  1. 南京航空航天大学 自动化学院, 南京 210016
  • 收稿日期:2020-11-26 出版日期:2021-05-24 发布日期:2021-05-25
  • 作者简介:吴雨浩(1996—), 男, 江西九江人, 南京航空航天大学硕士研究生, 主要从事表面肌电信号的识别与控制研究, (Tel)86-15723450348(E-mail)413957870@qq.com; 王从庆(1960—), 男, 南京人, 南京航空航天大学教授, 博士生导师, 主要从事模式识别与智能系统研究, (Tel)86-13151426390(E-mail)wangcq@nuaa.edu.cn
  • 基金资助:
    2016 年江苏省科技计划基金资助项目(BE2016757)

Gesture Recognition Based on Multi-Branch Convolutional Neural Networks

WU Yuhao, WANG Congqing   

  1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2020-11-26 Online:2021-05-24 Published:2021-05-25

摘要: 为提高利用表面肌电信号(sEMG: Surface Electromyography)进行手势识别的准确率并解决其受不同提取特征影响的问题, 提出了一种基于多路卷积神经网络(MB-CNN: Multi-Branch Convolutional Neural Networks)的手势识别方法。 首先, 使用 MYO 手环采集 8 种不同手势的 sEMG 信号; 然后, 利用滑动窗口法对 sEMG 信号进行活动段提取, 生成大小为 64×8 的原始训练样本; 其次, 作为对比实验, 提取 7 种不同的时域和频域特征, 利用机器学习算法进行手势识别。 最后, 在避免常规特征提取的情况下, 构建了一种多路卷积神经网络模型用于手势识别, 测试集上准确率达 97.89% 。 实验表明, 针对手势识别问题, 该方法高效可行。

关键词: 表面肌电信号')">表面肌电信号, 多路卷积神经网络')">多路卷积神经网络, 手势识别')">手势识别, 手环')">MYO 手环

Abstract: In order to improve the accuracy of gesture recognition algorithm using sEMG ( Surface Electromyography) signals and solve the problem of accuracy affected by various features extracted, a sEMG's recognition method based on MB-CNN (Multi-Branch Convolutional Neural Networks) is proposed. Firstly, a MYO armband is utilized to sample sEMG signals of 8 different gestures. Secondly, the sliding window method is used to detect active segment of sEMG signals and the original training samples with the size of 64×8 are obtained. Thirdly, as a comparative experiment, seven different time-domain and frequency-domain features are extracted from original samples and machine learning algorithms are used to achieve the gesture recognition. Finally, in the case of avoiding conventional feature extraction, a MB-CNN model is constructed to achieve the gesture recognition and the accuracy of test set gains 97.89% . Experiment shows the proposed method is efficient and feasible for gesture recognition.

Key words: surface electromyography ( sEMG), multi-branch convolutional neural networks ( MB-CNN), gesture recognition, MYO armband

中图分类号: 

  • TP391