吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (4): 368-375.

• • 上一篇    下一篇

基于双度量约束的拉普拉斯特征映射

李 宏1 , 齐 涵1 , 刘庆强1 , 李 富2 , 吴 丽3   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 大庆钻探工程公司 钻井一公司, 黑龙江 大庆 163318; 3. 大庆油田有限责任公司 天然气分公司培训中心, 黑龙江 大庆 163318
  • 收稿日期:2021-01-19 出版日期:2021-07-24 发布日期:2021-07-24
  • 通讯作者: 刘庆强(1977— ), 男, 黑龙江大庆人, 东北石油大学副教授, 硕士生导师, 主要从事信息安全、 智能控制、 信号处理与故障诊断研究, (Tel)86-13159833323(E-mail)petroboy@ 163. com
  • 作者简介:李宏(1969— ), 女, 黑龙江大庆人, 东北石油大学教授, 硕士生导师, 博士, 主要从事油气管道泄漏检测与信号处理研究, (Tel)86-15304893939(E-mail)853386766@ qq. com
  • 基金资助:
    国家重大科技专项基金资助项目(2017ZX05019-005); 黑龙江省自然科学基金资助项目(LH2019F004)

Laplace Characteristic Mapping Based on Double Measure Constraint

LI Hong1 , QI Han1 , LIU Qingqiang1 , LI Fu2 , WU Li3   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China; 2. Drilling Company Number One, Daqing Drilling Engineering Company, Daqing 163318, China; 3. Training Center of Natural Gas Branch, Daqing Oilfield Company Limited, Daqing 163318, China
  • Received:2021-01-19 Online:2021-07-24 Published:2021-07-24

摘要: 针对传统的拉普拉斯特征映射(LE: Laplacian Eigenmaps)算法采用欧氏距离度量样本点之间的位置关系只适用于线性数据集, 但实际工程中的数据常表现出强烈的非线性导致最终的嵌入结果难以反映出原始数据的本质特征问题, 提出了一种基于双度量约束的拉普拉斯特征映射(D-LE: Double metric constraint Laplace Eigenmaps)的算法。 该算法采用余弦相似性评估样本间的相似性, 并融合样本间以及样本与局部流形的度量关系, 构建降维模型。 通过在 3 个轴承数据集上进行实验, 实验结果表明, 该方法对处理非线性数据集能明显提高降维效果。

关键词: 拉普拉斯特征映射; , 余弦相似性; , 双度量约束; , 轴承故障诊断

Abstract: The traditional LE(Laplacian Eigenmaps) algorithm uses Euclidean distance to measure the position relationship between sample points, which is only applicable to linear data sets. However, the data in practical engineering often show strong non-linearity, which makes the final embedding results difficult to reflect the essential characteristics of the original data. An algorithm for D-LE(Double metric constraint Laplace Eigenmaps) based on Double metric constraint is proposed. The algorithm uses cosine similarity to evaluate the similarity between samples, and combines the measurement relations between samples and between samples and local manifolds to build dimensionality reduction model. Experiments on three bearing datasets show that this method can significantly improve the dimensionality reduction effect for processing nonlinear datasets.

Key words: laplace characteristic map, cosine similarity, double measure constraint, bearing fault diagnosis

中图分类号: 

  • TN911. 72