吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (6): 637-646.

• • 上一篇    下一篇

基于压缩感知的电力扰动数据采集与分类方法

周桂平1 , 李石强2 , 于华楠2 , 王 鹤2   

  1. 1. 国网辽宁省电力有限公司 电力科学研究院, 沈阳 110006; 2. 东北电力大学 现代电力系统仿真控制 与绿色电能新技术教育部重点实验室, 吉林 吉林 132012
  • 收稿日期:2021-08-27 出版日期:2021-12-01 发布日期:2021-12-02
  • 作者简介:周桂平(1981— ), 男, 江苏扬州人, 国网辽宁省电力有限公司高级工程师, 博士, 主要从事设备状态监测及故障诊断研究, (Tel)86-13940311935(E-mail)18900911559@ 163. com。
  • 基金资助:
    国家重点研发计划基金资助项目(2019YFB1505402)

Data Acquisition and Classification Method of Power System Disturbance Based on Compressed Sensing

ZHOU Guiping 1 , LI Shiqiang 2 , YU Huanan 2 , WANG He 2   

  1. 1. Electric Power Research Institute, State Grid Liaoning Electric Power Company Limited, Shenyang 110006, China; 2. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education Northeast Electric Power University, Jilin 132012, China
  • Received:2021-08-27 Online:2021-12-01 Published:2021-12-02

摘要: 针对目前电力系统扰动数据分类特征提取困难和易受谐波干扰的问题, 提出一种新的基于压缩感知的电 力系统扰动数据采集与分类算法。 首先通过压缩感知和 K 奇异值分解(K-SVD: K-Singular Value Decomposition) 字典学习算法, 设计一种原子自适应的正交匹配追踪算法(AtOMP: Atom adaptive Orthogonal Matching Pursuit), 对多种扰动数据进行压缩采集, 然后提取扰动数据的稀疏特征、自适应字典原子的标准差、峭度、裕度因子和 主频率个数 5 个分类特征, 利用 BP(Back Propagation)神经网络实现样本学习与分类。 实验结果表明, 该算法 可实现扰动数据的高度压缩采集, 数据量小, 具有分类识别度高, 抗干扰性强等优点。

关键词: 压缩感知 , 稀疏字典 , K-SVD 算法 , 扰动信号分类 , BP 神经网络

Abstract: Power system disturbance data is of great significance for monitoring power system operation state and regulating its working mode. A new algorithm for power system disturbance data acquisition and classification is proposed based on compressed sensing. Firstly, an AtOMP ( Atom adaptive Matching Pursuit) algorithm is designed based on compressed sensing and K-SVD ( K-Singular Value Decomposition ) dictionary learning algorithm to compress and collect various disturbed data. Then, the sparse feature of the disturbed data, the standard deviation of the adaptive dictionary atom, kurtosis, margin factor and the number of principal frequencies are extracted as the training samples, and the BP neural network is used to realize the sample learning and classification. The experimental results show that the proposed algorithm can achieve highly compressed data collection of disturbed data, small data amount, high classification recognition, strong anti-interference and other advantages.

Key words: compressed sensing, sparsely dictionary, K-singular value decomposition ( K-SVD) algorithm, disturbance signal classification, back propagation (BP) neural network

中图分类号: 

  • TM913