吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (1): 20-29.

• • 上一篇    下一篇

基于改进狼群算法的多机协同目标分配研究

陈 杰, 薛雅丽, 叶金泽   

  1. 南京航空航天大学 自动化学院, 南京 211106
  • 收稿日期:2021-06-10 出版日期:2022-01-25 发布日期:2022-01-26
  • 作者简介:陈杰(1996— ), 男, 浙江温州人, 南京航空航天大学硕士研究生, 主要从事智能决策研究, ( Tel)86-18257799280(E-mail)58229608@ qq. com; 薛雅丽(1974— ), 女, 黑龙江集贤人, 南京航空航天大学副教授, 主要从事飞行器自适应控制和目标识别研究, (Tel)86-13813827273(E-mail)xueyali@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61922042)

Research on Multi-Aircraft Cooperative Target Assignment Based on Improved Wolves Algorithm

CHEN Jie, XUE Yali, YE Jinze#br# #br#   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2021-06-10 Online:2022-01-25 Published:2022-01-26

摘要: 为充分发挥战机集群整体作战优势以得到最优目标分配方案, 采用改进狼群算法对战场态势模型进行求解。 通过保证算法的寻优效率, 引入次头狼概念对狼群的召唤与围攻行为做出改进, 并对狼群算法的更新机制做出了优化, 提高算法的全局寻优能力。 仿真结果表明, 所提方法能快速准确地寻找到最优目标函数值, 且在一定程度上改善了传统狼群算法易陷入局部最优的情况。

关键词: 目标分配, 狼群算法, 局部最优

Abstract: In order to give full play to the overall combat superiorities of the aircraft cluster to obtain optimal target allocation plan, we use an improved wolf pack algorithm to solve the battlefield situation model. In order to improve the global optimization ability of the algorithm and ensure the optimization efficiency of the algorithm,the concept of the second wolf is introduced to improve the calling and siege behavior of the wolf pack, and the update mechanism of the wolf pack algorithm is optimized. The simulation results show that the proposed method can quickly and accurately find the optimal objective function value, and to a certain extent improves the situation that the traditional wolf pack algorithm is easy to fall into the local optimum.

Key words: target allocation, wolf pack algorithm, local optima

中图分类号: 

  • TP273. 5