吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (5): 914-921.

• • 上一篇    下一篇

基于星载被动微波的中国东北森林雪深反演

李王波, 范昕桐, 顾玲嘉   

  1. 吉林大学 电子科学与工程学院, 长春 130012
  • 收稿日期:2022-05-09 出版日期:2023-10-09 发布日期:2023-10-10
  • 通讯作者: 顾玲嘉(1981— ), 女, 长春人, 吉林大学教授, 博士生导师, 主要从事卫星遥感技术与 应用及人工智能领域研究, (Tel)86-13314333637(E-mail)gulingjia@ jlu. edu. cn。 E-mail:gulingjia@ jlu. edu. cn
  • 作者简介:李王波(1997— ), 男, 山西临汾人, 吉林大学硕士研究生, 主要从事森林积雪遥感研究, (Tel)86-13174318026(E-mail) wbli19@ jlu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(41871225) 

Snow Depth Retrieval for Forest Area in Northeast China Based on Spaceborne Passive Microwave

LI Wangbo, FAN Xintong, GU Lingjia   

  1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2022-05-09 Online:2023-10-09 Published:2023-10-10

摘要: 针对受森林地区复杂地形和植被冠层结构的影响, 基于被动微波遥感数据的森林地区雪深反演精度普遍 较低的问题, 在代表性半经验雪深反演算法的基础上, 结合森林气象站观测数据建立了中国东北森林地区半 经验雪深反演优化算法。 该算法考虑了森林植被介电常数随气温变化的特性, 使森林地区的雪深反演精度得 到了较大的提高。 与其他代表性半经验雪深算法相比, 该算法的均方根误差(RMSE: Root-Mean-Square Error) 平均减小了 2. 3 cm, 偏差(Bias)平均减小了 3. 7 cm, 相关系数(R)平均提升了 0. 11; 与常用的机器学习雪深反 演算法对比, 该算法的 RMSE 平均减小了 2. 17 cm, Bias 平均减小了 1. 67 cm, R 平均提升了 0. 22。 

关键词: 被动微波, 雪深反演, 森林, 气温

Abstract:

Due to the influence of complex terrain and canopy structure in forest, the accuracy of snow depth retrieval based on passive microwave remote sensing data is generally low. Based on the representative semi- empirical snow depth retrieval algorithm and combined with meteorological observation data, an optimization algorithm of semi-empirical snow depth retrieval in forest area in Northeast China was established in this paper. In this algorithm, the permittivity of vegetation varies with temperature and the accuracy of snow depth retrieval in forest is greatly improved. Compared with other representative semi-empirical algorithms, the RMSE(Root- Mean-Square Error) of the proposed algorithm is reduced by 2. 3 cm, Bias by 3. 7 cm on average and correlation (R) improved by 0. 11 on average. Compared with the commonly used snow depth retrieval algorithm based on machine learning, the RMSE of the proposed algorithm is reduced by 2. 17 cm, Bias by 1. 67 cm on average and R improved by 0. 22 on average.

 

Key words: passive microwave, snow depth retrieval, forest, air temperature

中图分类号: 

  • TP391