吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (5): 930-937.

• • 上一篇    下一篇

基于改进无参数 K-means 算法的刀具状态分析

吴晓勇, 侯秋丰, 罗 勇   

  1. 浙江向隆机械有限公司 产品开发部, 浙江 宁波 315311
  • 收稿日期:2023-07-16 出版日期:2023-10-09 发布日期:2023-10-11
  • 通讯作者: 罗勇(1978— ), 男, 四川资中人, 浙江向隆机械有限公司工程师, 主要 从事汽车传动系统研究, (Tel)86-13819851794(E-mail)lawren. luo@ cn-sps. com。 E-mail:lawren. luo@ cn-sps. com
  • 作者简介:吴晓勇(1986— ), 男, 福建漳州人, 浙江向隆机械有限公司工程师, 主要从事汽车传动系统研究, (Tel)86-15058457890 (E-mail)xiaoyong. wu@ cn-sps. com
  • 基金资助:
    2021 年度宁波市第二批重大科技攻关暨揭榜挂帅冶基金资助项目(科技创新 2025 重大专项(2022Z018))

Tool State Analysis Based on Improved Nonparametric K-means Algorithm

WU Xiaoyong, HOU Qiufeng, LUO Yong   

  1. Product Development Department, Zhejiang Xianglong Machinery Company Limited, Ningbo 315311, China
  • Received:2023-07-16 Online:2023-10-09 Published:2023-10-11

摘要: 针对 K-means 算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题, 结合 基于密度峰值的聚类算法 CFSFDP(Clustering by Fast Search and Find of Density Peaks), 提出一种改进的无参数 K-means 算法。 首先, 计算样本点的局部密度和离散度。 然后, 建立决策图, 将两个参数组成向量, 计算每个 点到周围 5 个点的距离, 筛选出距离大于 2 倍均方差且密度大于平均密度的点作为算法的初始聚类中心, 统计 聚类中心个数 k 作为聚类个数, 将初始聚类个数 k 以及初始聚类中心作为 K-means 算法的初始参数对数据进行 聚类。 最后, UCI(University of California, Irvine)数据集、 人工建立的高斯数据集以及真实刀具振动数据集 3 种不同类型的数据集进行聚类。 结果表明, 所提算法保持传统算法全局最优性, 并验证了提出算法的有效 性。 由于 K-means 是一种无监督聚类方法, 在获得较优刀具状态识别结果的同时, 可减少人工数据标定、 有监督训练等工作量及运算成本, 这对于准确实时提取数控机床刀具运行状态具有较高的实际意义。

关键词: K-means 聚类算法, 无参数, 数控机床, 刀具磨损识别 

Abstract:

For the problem that the K-means algorithm requires manual determination of the cluster numbers and random selection of initial clustering centers, which can fall into local optima, an improved parameter-free K-means algorithm is proposed by combining the density peak-based clustering algorithm CFSFDP(Clustering by Fast Search and Find of Density Peaks). First, the local density and dispersion of the sample points are calculated, then a decision diagram is established, and a vector of two parameters is composed. The distance from each point to the surrounding 5 points is calculated, and those with a distance greater than 2 times the mean square error and a density greater than the average density are filtered out. The filtered point is used as the initial clustering center of the algorithm. The number of statistical clustering centers k is used as the number of clusters, and the initial number of clusters k and the initial clustering centers are used as the initial parameters of the K-means algorithm to cluster data. The algorithm is tested on different types of data sets, including artificially created Gaussian data sets, UCI(University of California, Irvine) data sets, and real tool vibration data sets. The results show that the proposed algorithm maintains the global optimality of the traditional algorithm and validates its effectiveness. Since K-means is an unsupervised clustering method, it can reduce the workload and computational cost of manual data calibration, supervised training, etc. , while obtaining better tool state recognition results, which is of high practical significance for accurate real-time extraction of the operating state of the tool for computerized numerical control machine tools.

Key words: K-means clustering algorithm, nonparametric, numerical control machine, tool wear identification

中图分类号: 

  • TP312