generalization transfer deep learning, cross-modal images, pedestrian recognition, feature extraction ,"/> 泛化迁移深度学习下的跨模态图像行人识别算法

吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 137-142.

• • 上一篇    下一篇

泛化迁移深度学习下的跨模态图像行人识别算法

蔡现龙, 李 阳, 陈 曦   

  1. 西安明德理工学院 信息工程学院, 西安 710124
  • 收稿日期:2022-10-13 出版日期:2024-01-29 发布日期:2024-02-04
  • 作者简介:蔡现龙(1976— ), 男, 陕西渭南人, 西安明德理工学院讲师, 主要从事计算机科学与技术研究, ( Tel)86-18966717386 (E-mail)2631069053@ qq. com
  • 基金资助:
    西安明德理工学院科研基金资助项目(2021XY01L09) 

Pedestrian Recognition Algorithm of Cross-Modal Image under Generalized Transfer Deep Learning

CAI Xianlong, LI Yang, CHEN Xi    

  1. School of Information Engineering, Xi’an Mingde Institute of Technology, Xi’an 710124, China
  • Received:2022-10-13 Online:2024-01-29 Published:2024-02-04

摘要: 针对由于受光照条件变化、 行人身高差异等影响, 致使监控视频图像在不同时刻的成像存在较大的跨 模态差异问题, 为准确识别跨模态图像中的行人, 提出基于泛化迁移深度学习的跨模态图像行人识别算法。 通过循环生成对抗网络(Cyele GAN: Cycle Generative Adversarial Network)形成跨模态图像, 采用单目标图像 处理对基准图分割处理, 得到人体候选区域, 在匹配图中搜索和其匹配的区域, 得到人体区域的视差, 通过 视差提取人体区域的深度和透视特征。 将注意力机制和跨模态行人识别相结合, 分析两种不同类型图像的 差异, 将两个子空间映射到同一个特征空间, 同时引入泛化迁移深度学习算法对损失函数度量学习, 自动筛选 跨模态图像的行人特征, 最终通过模态融合模块将筛选的特征融合处理完成行人识别。 实验结果表明, 所提 算法可以快速、 准确地提取不同模态图像中的行人, 识别效果较好。

关键词:  , 泛化迁移深度学习, 跨模态图像, 行人识别, 特征提取 

Abstract:  Due to the influence of changes in lighting conditions and pedestrian height differences, there are large cross modal differences in surveillance video images at different times. In order to accurately identify pedestrians in cross modal images, a pedestrian recognition algorithm based on generalized transfer depth learning is proposed. The cross modal image is formed through Cyele GAN(Cycle Generative Adversarial Network), and the reference map is segmented using single object image processing to obtain candidate human body regions. The matching regions are searched in the matching map to obtain the disparity of human body regions, and the depth and perspective features of human body regions are extracted through the disparity. The attention mechanism and cross modal pedestrian recognition are combined to analyze the differences between the two types of images. The two subspaces are mapped to the same feature space. And the generalized migration depth learning algorithm is introduced to learn the loss function measurement, automatically screen the pedestrian features of the cross modal images, and finally complete pedestrian recognition through the modal fusion module to fuse the filtered features. The experimental results show that the proposed algorithm can quickly and accurately extract pedestrians from different modal images, and the recognition effect is good. 

Key words: generalization transfer deep learning')">

generalization transfer deep learning, cross-modal images, pedestrian recognition, feature extraction

中图分类号: 

  •