target detection, you only look once (YOLO) algorithm, feature extraction, attention mechanism, multi-scale prediction ,"/>  Misp-YOLO: 加油站场景目标检测

吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 168-175.

• • 上一篇    下一篇

 Misp-YOLO: 加油站场景目标检测

 刘远红, 程明皓    

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2022-09-16 出版日期:2024-01-29 发布日期:2024-02-04
  • 作者简介: 刘远红(1979— ), 男, 长沙人, 东北石油大学副教授, 主要从事自动化控制与模式识别领域研究, (Tel)86-13845959555 (E-mail)2469366673@ qq. com

Misp-YOLO: Gas Station Scene Target Detection

LIU Yuanhong, CHENG Minghao   

  1. School of Electrical Information and Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2022-09-16 Online:2024-01-29 Published:2024-02-04

摘要: 针对 Yolov3-Tiny 算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、 漏检率高 等问题, 提出一种基于加油站场景的 Misp-YOLO(You Only Look Once)目标检测算法。 首先引入 Mosaic 数据 增强算法, 使图片包含更多特征信息; 其次使用 InceptionV2 PSConv(Poly-Scale Convolution)多尺度特征提取 方法提升网络多尺度预测能力; 最后结合 scSE(Concurrent Spatial and Channel ‘ Squeeze & Excitation)注意力 机制, 重构主干网络输出特征。 实验结果证明该算法具有较高检测准确度, 并且检测速度满足实际需求。 优化 后的算法性能得到极大提升, 可推广应用于其他目标检测中。

关键词: 目标检测, YOLO 算法, 特征提取, 注意力机制, 多尺度预测 

Abstract:  In order to solve the problem that Yolov3-Tiny algorithm has insufficient feature extraction in gas station monitoring scene detection, which results in low detection accuracy, a new target detection algorithm based on gas station scene is proposed. This method first introduces Mosaic data enhancement algorithm to make the picture contain more feature information. Secondly, InceptionV2 and PSConv ( Poly-Scale Convolution) multiscale feature extraction methods are used to improve the network multiscale prediction ability. Finally, combined with the scSE(Concurrent Spatial and Channel ‘ Squeeze & Excitation’) attention mechanism, the output characteristics of the backbone network are reconstructed. The experimental results show that the algorithm has high detection accuracy and the detection speed meets the actual needs. The performance of the optimized algorithm is greatly improved and can it be applied to other target detection. 

Key words: target detection')">

target detection, you only look once (YOLO) algorithm, feature extraction, attention mechanism, multi-scale prediction

中图分类号: 

  • TP183