吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 176-185.

• • 上一篇    下一篇

基于 EMD-BiLSTM-ANFIS 的负荷区间预测 

李宏玉, 彭 康, 宋来鑫, 李桐壮   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2022-11-29 出版日期:2024-01-29 发布日期:2024-02-04
  • 作者简介:李宏玉(1979— ), 男, 黑龙江齐齐哈尔人, 东北石油大学副教授, 硕士生导师, 主要从事电力系统综合自动化、 智能 电网等理论及应用研究, (Tel)86-13836999096(E-mail)lhy-hero@ 163. com

Load Interval Forecast Based on EMD-BiLSTM-ANFIS

LI Hongyu, PENG Kang, SONG Laixin, LI Tongzhuang   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2022-11-29 Online:2024-01-29 Published:2024-02-04

摘要:  考虑到新型电力负荷随机性增强, 传统的准确预测方法已无法满足要求, 提出一种 EMD-BiLSTM-ANFIS (Empirical Mode Decomposition-Bi-directional Long Short-Term Memory-Adaptive Network-based Fuzzy Inference System)分位数预测负荷概率密度的方法, 使用负荷预测区间取代点预测的准确数值, 能为电力系统分析与 决策提供更多数据, 增强预测的可靠性。 首先将原始负荷序列通过 EMD(Empirical Mode Decomposition)分解成 若干分量, 并通过计算样本熵分为 3 类分量。 然后将重构后的 3 类分量与由相关性筛选的外界因素特征采用 BiLSTMANFIS 模型进行训练和分位数回归(QR: Quantile Regression), 并将分量的预测区间结果累加得到最终 负荷的预测区间。 最后利用核密度估计输出任意时刻用户负荷概率密度预测结果。 通过与 CNN-BiLSTM (Convolutional Neural Network-Bidirectional Long Short-Term Memory)LSTM(Long Short-Term Memory)模型对比点 预测及区间预测结果, 证明了该方法的有效性。 

关键词:  , 经验模态分解, 双向长短期神经网络, 模糊推理系统, 分位数回归, 概率密度预测

Abstract: Considering that the randomness of the new power load is enhanced, the traditional accurate forecasting methods can not meet the requirements, an EMD-BiLSTM-ANFIS (Empirical Mode Decomposition Bi-directional Long Short Term Memory Adaptive Network is proposed based Fuzzy Inference System) quantile method to predict the load probability density. It replaces the accurate value of point prediction with the load prediction interval, which can provide more data for power System analysis and decision-making, The reliability of prediction is enhanced. First, the original load sequence is decomposed into several components by EMD, and then divided into three types of components by calculating the sample entropy. Then, the reconstructed three types of components and the characteristics of external factors screened by correlation. And they are used together with the Bilstm and ANFIS models for prediction training and QR(Quantile Regression), and accumulate the results of the prediction interval of the components to obtain the prediction interval of the final load. Finally, the kernel density estimation is used to output the user load probability density prediction results at any time. The validity of this method is proved by comparing the point prediction and interval prediction results with CNN- BiLSTM(Convolutional Neural Network-Bidirectional Long Short-Term Memory) and LSTM ( Long Short-Term Memory)models. 

Key words: empirical mode decomposition, two way long and short term neural network, fuzzy inference system, quantile regression, probability density prediction

中图分类号: 

  • TP183