吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (2): 210-216.

• • 上一篇    下一篇

面向移动边缘计算的任务卸载方法研究

张光华, 徐 航, 万恩晗   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2023-02-11 出版日期:2024-04-10 发布日期:2024-04-12
  • 作者简介:张光华(1979— ), 男, 河南西华人, 东北石油大学副教授, 硕士生导师, 主要从事信息与信号处理、 移动定位及卫星 导航研究, (Tel)86-459-6504680(E-mail)dqzgh@ nepu. edu. cn
  • 基金资助:
     国家自然科学基金资助项目(61871348) 

Research on Task Offloading Strategy for Mobile Edge Computing

ZHANG Guanghua, XU Hang, WAN Enhan   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-02-11 Online:2024-04-10 Published:2024-04-12

摘要: 目前大多计算卸载策略是在任务整体卸载情况下进行的且仅考虑时延或能耗单一指标未将二者结合进行优化为此以任务处理的时延与能耗加权和为优化目标提出一种基于强化学习的部分卸载算法。 将单个任务的处理分为本地计算和部分卸载两种方式且在部分卸载中引入了变量确定卸载权重最后利用强化 学习 Q-learning 完成了所有任务的计算卸载与资源分配。 实验结果表明所提算法能有效降低任务处理的时延与能耗。

关键词: 移动边缘计算, 计算卸载, 强化学习, 强化学习

Abstract: Computation offloading strategy in mobile edge computing can help users decide how to execute tasks, which is related to user experience, and has become a research hotspot in mobile edge computing. At present, most computation offloading strategies are carried out under the condition of overall task offloading, and only consider a single indicator of delay or energy consumption, and do not combine the two for optimization. To solve this problem, this paper takes the weighted sum of task processing delay and energy consumption as the optimization goal, and proposes a partial offloading algorithm based on reinforcement learning. We divide the processing of a single task into local computing and partial offloading computing, and introduce a variable to determine the offloading weight in partial offloading. Finally, we use reinforcement learning Q-learning to complete the computation offloading and resource allocation of all tasks. Experimental results show that the proposed algorithm can effectively reduce the delay and energy consumption of task processing.

Key words: mobile edge computing, computation offloading, reinforcement learning, Q-learning

中图分类号: 

  • TN92