吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 790-798.

• • 上一篇    下一篇

基于MAPPO 的无信号灯交叉口自动驾驶决策 

许曼晨a, 于  镝a, 赵  理b, 郭陈栋   

  1. 北京信息科技大学a. 自动化学院;b. 机电工程学院,北京100192
  • 收稿日期:2024-02-04 出版日期:2024-10-21 发布日期:2024-10-21
  • 通讯作者: 于镝(1977— ), 女, 黑龙江安达人, 北京信息科技大学副教授, 博士, 主要从事多智能体协同优化控制和智能决策研究,(Tel)86-13401135691(E-mail)yudizlg@aliyun.com。
  • 作者简介:许曼晨(1997— ), 男, 安徽芜湖人, 北京信息科技大学硕士研究生,主要从事自动驾驶轨迹预测与决策研究,(Tel)86- 13655533777(E-mail)173420650@ qq. com
  • 基金资助:
    国家自然科学基金资助项目(52077007) 

Autonomous Driving Decision-Making at Signal-Free Intersections Based on MAPPO

XU Manchena, YU Dia, ZHAO Lib, GUO Chendong   

  1. a. School of Automation; b. School of Electromechanical Engineering, Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2024-02-04 Online:2024-10-21 Published:2024-10-21

摘要: 针对自动驾驶在通过无信号灯交叉口由于车流密集且车辆行为随机不确定的问题, 提出一种基于 MAPPO(Multi-Agent Proximal Policy Optimization)算法的无信号灯交叉口自动驾驶决策方案。 通过 MetaDrive 仿真环平台搭建多智能体仿真环境,并且设计了综合考虑交通规则、安全到达或发生碰撞等安全性以及交叉口 车辆最大、最小速度等车流效率的奖励函数,旨在实现安全高效的自动驾驶决策。 仿真实验表明,所提出的自 动驾驶决策方案在训练中相较于其他算法具有更出色的稳定性和收敛性,在不同车流密度下均呈现出更高的 成功率和安全性。 该自动驾驶决策方案在解决无信号灯交叉口环境方面具有显著潜力,并且为复杂路况自动 驾驶决策的研究起到促进作用。 

关键词: 自动驾驶, 智能决策, 无信号灯交叉口, MAPPO算法 

Abstract:  Due to the dense traffic flow and stochastic uncertainty of vehicle behaviors, the scenario of unsignalized intersection poses significant challenges for autonomous driving. An innovative approach for autonomous driving decision-making at unsignalized intersections is proposed based on the MAPPO(Multi-Agent Proximal Policy Optimization) algorithm. Applying the MetaDrive simulation platform to construct a multi-agent simulation environment, we design a reward function that comprehensively considers traffic regulations, safety including arriving safely and occurring collisions, and traffic efficiency considering the maximum and minimum speeds of vehicles at intersections, aiming to achieve safe and efficient autonomous driving decisions. Simulation experiments demonstrate that the proposed decision-making approach exhibits superior stability and convergence during training compared to other algorithms, showcasing higher success rates and safety levels across varying traffic densities. These findings underscore the significant potential of the autonomous driving decision-making solution for addressing challenges in unsignalized intersection environments, thereby advancing research in autonomous driving decision-making under complex road conditions.自动驾驶;智能决策;无信号灯交叉口;MAPPO算法 

Key words: autonomous driving, intelligent decision-making, signal-free intersections, multi-agent proximal policy optimization(MAPPO) algorithm

中图分类号: 

  • TP273