吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 799-807.

• • 上一篇    下一篇

基于Informer 融合模型的油田开发指标预测方法 

   a, 薛陈斌a,    a,    b   

  1. 东北石油大学a. 计算机与信息技术学院;b. 现代教育技术中心,黑龙江大庆163318
  • 收稿日期:2023-08-07 出版日期:2024-10-21 发布日期:2024-10-21
  • 通讯作者: 薛陈斌(1998— ), 男, 山西运城人, 东北石油大学硕士研究生, 主要从事深度学习研究,(Tel)86 -18535911335(E -mail)18535911335@163. com。
  • 作者简介:张强(1982— ), 男,黑龙江牡丹江人,东北石油大学教授,博士生导师,主要从事神经网络及智能进化算法研究,(Tel) 86 -13796989561(E -mail)dqpi_zq@163. com
  • 基金资助:
    国家自然科学基金资助项目(42002138); 黑龙江省自然科学基金资助项目(LH2022F008); 黑龙江省博士后专项基金资助 项目(LBH -Q20077); 黑龙江省优秀青年教师基础研究支持计划基金资助项目(YQJH2023073)

Method for Predicting Oilfield Development Indicators Based on Informer Fusion Model

ZHANG Qianga, XUE Chenbina, PENG Gua, LU Qingb   

  1. a. School of Computer and Information Technology; b. Modern Educational Technology Center, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-08-07 Online:2024-10-21 Published:2024-10-21

摘要: 为解决油田开发指标的预测问题,提出了一种基于物质平衡方程和Informer的融合模型。 首先, 通过 物质平衡方程领域知识建立油田开发产量递减前后的机理模型;其次,将所建机理模型作为约束与Informer 模型损失函数进行融合建立符合油田开发物理规律的指标预测模型;最后,采用油田实际生产数据进行实验 分析, 结果表明相比于纯数据驱动的几种循环结构预测模型,本融合模型在相同数据条件下的预测效果更优。 该模型的机理约束部分能引导模型的训练过程,使其收敛速度更快,且波峰波谷处的预测更准确。 该融合模型 具有更好的预测能力和泛化能力和比较合理的物理可解释性。

关键词: Informer 模型, 机理模型, 深度融合模型, 预测 

Abstract: A fusion model based on material balance equation and Informer is proposed to solve the prediction problem of oilfield development indicators. Firstly, the mechanism model before and after the decline of oil field development production is established through the knowledge of the material balance equation field. Secondly, the established mechanism model is fused with the loss function of the Informer model as a constraint to establish an indicator prediction model that conforms to the physical laws of oil field development. Finally, the actual production data of the oil field is used for experimental analysis. The results indicate that compared to several purely data -driven cyclic structure prediction models, this fusion model has better prediction performance under the same data conditions. The mechanism constraints of this model can guide the training process of the model, so that its rate of convergence is faster, and the prediction at the peak and trough is more accurate. This fusion model has better predictive and generalization abilities, and has a certain degree of physical interpretability. 

Key words: Informer model, mechanism model, deep fusion model, prediction

中图分类号: 

  • TP18