吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 937-942.

• • 上一篇    下一篇

强鲁棒性边缘计算数据安全算法 

刘洋洋1a, 刘  苗1b,2, 聂中文   

  1. 1. 东北石油大学 a. 物理与电子工程学院,黑龙江大庆163318;b. 秦皇岛校区,河北 秦皇岛066044; 2. 无锡学院电子信息工程学院,江苏无锡210044;3. 上海燃气工程设计研究有限公司智慧能源院,上海200120
  • 收稿日期:2023-04-23 出版日期:2024-10-21 发布日期:2024-10-23
  • 通讯作者: 刘苗(1980— ), 女, 乌鲁木齐人, 东北石油大学教授, 无锡 学院教授,博士生导师,主要从事物联网安全与性能优化研究,(Tel)86-18910287807(E-mail)lm_jlu@163.com。
  • 作者简介:刘洋洋(1998— ), 男, 安徽阜阳人, 东北石油大学硕士研究生, 主要从事联邦学习与边缘计算安全研究, (Tel)86- 13721219700(E-mail)Liuyangyang529@163. com
  • 基金资助:
    黑龙江省自然科学基金资助项目(LH2022F004)

Strongly Robust Data Security Algorithms for Edge Computing 

 LIU Yangyang1a, LIU Miao1b,2, NIE Zhongwen   

  1. 1a. College of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China; 1b. Qinhuangdao Campus, Northeast Petroleum University, Qinhuangdao 066044, China; 2. School of Electronic Information Engineering, Wuxi University, Wuxi 210044, China; 3. Smart Energy Institute, Shanghai Gas Engineering Design and Research Company Limited, Shanghai 200120, China
  • Received:2023-04-23 Online:2024-10-21 Published:2024-10-23

摘要:  针对由于采用分布式部署传感器的方式会导致边缘服务器出现数据量分布单一且不平衡的现象,并且 边缘计算下的模型训练也会因梯度异常导致数据集被污染带来极为严重的隐私泄露问题,提出了强鲁棒性 边缘计算(EC: Edge Computing) 数据安全算法 (RDSEC: Strongly Robust Data Security Algorithms for Edge Computing)。 该算法利用异构网络对图像特征共同提取, 并使用同态加密实现对边缘服务器的参数加密, 实现 隐私保护。 若在边缘节点进行梯度异常检测时发现异常,则边缘节点上传梯度时会附加一个信号告知云中心 当前边缘节点所上传的参数是否可用。 该算法在Cifar10Fashion数据集上的实验取得了极佳结果, 实现了 数据集分配比失衡的条件下也能有效聚合边缘服务器参数,提升边缘节点算力和运算准确率。 并且在保证 数据隐私的条件下,使模型的鲁棒性、精确性和训练速度大幅提升,实现边缘节点对图像预测的高准确率。 

关键词: 传感器, 边缘服务器, 隐私泄露, 参数共享 

Abstract: The use of distributed deployment of sensors will lead to the edge of the server data distribution single imbalance phenomenon, the model training under edge computing can also result in serious privacy leakage problem due to the data set pollution caused by gradient anomaly. RDSEC(Strongly Robust Data Security Algorithms for Edge Computing) is proposed, encryption algorithm is used to encrypt the parameters of the edge server to protect privacy. If an anomaly is found in the gradient anomaly detection of the edge node, the edge node uploads the gradient with a signal to tell the cloud center if the current parameters uploaded by the edge node are available. The experimental results on CIFAR10 and Fashion data sets show that the algorithm can efficiently aggregate the parameters of edge servers and improve the computing power and accuracy of edge nodes. Under the condition of ensuring data privacy, the robustness, accuracy and training speed of the model are greatly improved, and the high accuracy of edge node is achieved. 

Key words: sensor, edge server, privacy leakage, parameter sharing

中图分类号: 

  • TP391