吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 943-951.

• • 上一篇    下一篇

融合认知负荷的学习者模型的构建与推荐研究 

袁  满,卢雯雯   

  1. 东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 收稿日期:2022-02-22 出版日期:2024-10-21 发布日期:2024-10-23
  • 作者简介:袁满(1965— ), 男, 吉林农安人, 东北石油大学教授,博士生导师,主要从事知识组织、 认知科学、 数据科学和标准化 研究, (Tel)86-15765959186(E-mail)yuanman@ nepu. edu. cn。
  • 基金资助:
    黑龙江省高等教育教学改革基金资助项目(SJGY20200107) 

Research on Construction and Recommendation of Learner Model Integrating Cognitive Load 

 YUAN Man, LU Wenwen   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2022-02-22 Online:2024-10-21 Published:2024-10-23

摘要: 由于认知负荷作为学习者学习过程中认知系统所产生的负载,对学习者的学习状态有重要影响,并且 目前已有的学习者模型中缺乏对学习者认知负荷的研究。 为此以教育部教育信息化技术标准委员会提出的 CELTS-11(China E-Learning Technology Standardization-11)为基础, 将认知负荷作为一个维度融入学习者模型, 构建了静态与动态信息相结合的LMICL(Learner Model Incorporating Cognitive Load)。 然后, 以自适应学习系统 为依托,将未融合认知负荷的学习者模型的数据和LMICL的数据分别作为推荐学习资源的依据,产生了两种 不同的学习资源推荐结果,并随机选取两个班级的学习者在该系统中进行学习,最后从学习者的学习成绩、 认知负荷结果和满意度3个指标对LMICL的效果进行验证。 结果表明, 基于LMICL的推荐学习效果强于未 融合认知负荷的学习者模型。

关键词: 学习者模型, 认知负荷, 融合认知负荷的学习者模型(LMICL)

Abstract:  The current learner model lacks exploration of this dimension of cognitive load, which, as a load generated by the cognitive system during the learning process, has a significant impact on the learning state of learners. Based on the CELTS-11(China E-Learning Technology Standardization-11) proposed by the China E-Learning Technology Standardization Committee, cognitive load is integrated into the learner model as a dimension, and an LMICL ( Learner Model Incorporating Cognitive Load) combining static and dynamic information is constructed. Afterwards, relying on an adaptive learning system, the data of the unmixed cognitive load learner model and the LMICL data were used as the basis for recommending learning resources, resulting in two different learning resource recommendation results. Two classes of learners were randomly selected to learn system, and then their academic performance. The results of cognitive load and satisfaction were used to validate the effectiveness of LMICL , and it was found that the recommendation learning effect based on LMICL was better than that of the learner model without integrating cognitive load.

Key words: learner model, cognitive load, learner model incorporating cognitive load(LMICL)

中图分类号: 

  • TP301