吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 49-57.

• • 上一篇    下一篇

四轮驱动车辆纵向速度估计方法研究

李正华辛玉林任 敏余文铮   

  1. 一汽-大众汽车有限公司 规划-工艺规划部, 长春 130011
  • 收稿日期:2023-12-21 出版日期:2025-02-24 发布日期:2025-02-24
  • 通讯作者: 辛玉林(1980— ), 男, 长春人, 一汽-大众汽车有限公司副高级工程师, 主要从事白车身焊装工艺及装备规划研究, (Tel)86-13689802560(E-mail)50963048@ qq. com。 E-mail:50963048@ qq. com
  • 作者简介:李正华(1982— ), 男, 长春人, 一汽-大众汽车有限公司副高级工程师, 主要从事车辆状态估计和白车身焊装工艺及装备研究, (Tel)86-18943909813(E-mail)zhenghua. li@ faw-vw. com
  • 基金资助:
     吉林省科技发展计划基金资助项目(20220201034GX)

Study on Estimation Method of Longitudinal Velocity for Four-Wheel-Drive Vehicle

LI Zhenghua, XIN Yulin, REN Min, YU Wenzheng   

  1. Department of Process Planning, FAW-Volkswagen Automotive Company Limited, Changchun 130011, China
  • Received:2023-12-21 Online:2025-02-24 Published:2025-02-24

摘要: 为准确获取车辆的纵向速度提出一种适用于四轮驱动车辆的纵向速度估计方法。 该方法利用有限状态机识别出当前时刻车辆的状态和时域窗口内车辆的状态, 进而有效切换自适应卡尔曼滤波法和积分法。 针对车辆四轮非全部打滑状态, 设计了一种实时更新测量噪声的自适应卡尔曼滤波方法, 并引入时域窗口内的测量值和估计误差提升估计精度。 对车辆四轮全部打滑状态, 以四轮非全部打滑时自适应卡尔曼滤波的最后一个准确纵向速度估计值作为初值, 积分车辆纵向加速度计算出纵向速度。 通过 Carsim 与 Simulink 联合仿真实验和实车数据实验验证了算法的有效性。 实验结果表明, 相比于积分法和轮速法, 提出的估计方法在冰雪等低附着路面上的估计精度分别至少提升了 65% 和 75% 。

关键词: 纵向速度估计, 自适应卡尔曼滤波, 四轮驱动车辆, 有限状态机, 时域

Abstract: To accurately obtain the longitudinal velocity of the vehicle, a longitudinal velocity estimation method applicable to four-wheel drive vehicles is proposed. Firstly, a finite state machine is utilized to identify the vehicle state at the current moment and the vehicle state in the time-domain window, which effectively switches between the adaptive Kalman filtering method and the integration method. For the four-wheel non-total skidding state, an adaptive Kalman filter method that updates the measurement noise in real time is designed. This method introduces the measurement value and estimation error in the time-domain window to improve the estimation accuracy. For the four-wheel total skidding state, the last longitudinal velocity estimate from adaptive Kalman filtering is used as the initial value, and the longitudinal velocity is calculated by integrating the longitudinal acceleration of the vehicle. The effectiveness of the algorithm is verified by Carsim and Simulink joint simulation experiments and real vehicle data experiments. The experimental results show that the estimation accuracy of the proposed estimation method is improved by at least 65% and 75% on low-adhesion road surfaces such as snow and ice, respectively, compared with the integral method and the method of estimating longitudinal velocity using wheel speeds.

Key words: longitudinalvelocity estimation, adaptive kalman filter, four wheel drive vehicle, finite state machine, time domain

中图分类号: 

  • TP29