吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 107-115.

• • 上一篇    下一篇

融合上下文信息和注意力机制的图卷积网络推荐模型

袁 满李嘉琪袁靖舒   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2023-12-28 出版日期:2025-02-24 发布日期:2025-02-24
  • 作者简介:袁满(1965— ), 男, 吉林农安人, 东北石油大学教授, 博士生导师, 主要从事知识组织、 认知科学、 数据科学和标准化研究, (Tel)86-15765959186(E-mail)yuanman@ nepu. edu. cn。
  • 基金资助:
    黑龙江省哲学社会科学研究规划基金资助项目(19EDE334)

Research on Graph Convolutional Network Recommendation Model Fusing Contextual Informationand Attention Mechanism

YUAN Man, LI Jiaqi, YUAN Jingshu   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-12-28 Online:2025-02-24 Published:2025-02-24

摘要: 由于传统推荐系统虽然采用了图结构信息但大部分只考虑了用户和物品的基本属性忽略了用户和物品的上下文交互信息这个重要因素, 而即使考虑到了上下文交互信息, 在层组合阶段也缺少注意力机制赋予权重。 为此, 提出了一个融合了上下文交互信息和注意力机制的 CIAGCN( Context Information Attention Graph Convolutional NetworksN)推荐模型。 该模型利用用户和物品的上下文交互信息, 同时应用图的高阶连通性理论获取更深层次的协同信号。 在层组合阶段引入注意力机制以提高该阶段的可解释性。 将该模型在 Yelp-OH、Yelp-NC 和 Amazon-Book 数据集上进行实验对比, 结果表明相比其他算法, 该模型具有一定的效果提升, 说明推荐效果优于传统的推荐模型。

关键词: 注意力机制, 推荐系统, 二部图, 图神经网络

Abstract:

Although traditional recommendation systems use graph structure information, most of them only consider the basic attributes of users and items, ignoring the important factor of contextual interaction information between users and items. Even if contextual interaction information is taken into account, there is a lack of attention in the layer combination stage. force mechanism to assign weight. To solve this problem, a CIAGCN (Context Information Attention Graph Convolutional Networks) recommendation model that integrates contextual interactive information and attention mechanism is proposed. This model utilizes the contextual interaction

information of users and items while applying the high-order connectivity theory of graphs to obtain deeper collaborative signals. An attention mechanism is introduced in the layer combination stage to improve the interpretability of this stage. The model was experimentally compared on the Yelp-OH, Yelp-NC and Amazon- Book data sets. The results showed that the model had a certain effect compared with other algorithms, indicating that the recommendation effect was better than some traditional recommendation models.

Key words: attention mechanism, recommendation system, bipartite graph, graph neural network

中图分类号: 

  •