吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 116-125.

• • 上一篇    下一篇

基于 YOLOv8-DSG 的钢铁表面缺陷检测算法

邹彦艳曹衍芬张馨月李 志崔世龙   

  1. 东北石油大学 物理与电子工程学院, 黑龙江 大庆 163318
  • 收稿日期:2023-11-02 出版日期:2025-02-24 发布日期:2025-02-24
  • 作者简介:邹彦艳(1977— ), 女, 辽宁义县人, 东北石油大学副教授, 硕士生导师, 主要从事信息采集与处理研究, ( Tel) 86-13936894822(E-mail)yyzou@ 163. com。
  • 基金资助:

    黑龙江省自然科学基金资助项目(LH2023A002)

Algorithm for Defect Detection of Steel Surface Based on YOLOv8-DSG

ZOU Yanyan, CAO Yanfen, ZHANG Xinyue, LI Zhi, CUI Shilong   

  1. College of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-11-02 Online:2025-02-24 Published:2025-02-24

摘要:

针对传统图像处理算法对钢铁表面缺陷检测存在识别效率低、 漏检误检率高等问题, 提出了 YOLOv8-DSG(Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union)钢铁表面缺陷检测算法。 在传统 YOLOv8 算法的基础上, 首先在 Backbone 网络的 C2f(Convolution to Feature)模块中嵌入了可变形卷积网络 DCN(Deformable Convolution Network) , 增强了模型在复杂背景条件下的特征提取能力;其次, 在 Neck 网络中引入了 SE( Squeeze and Excitation Network)注意力模块, 突出钢铁表面重要特征信息,提升了特征融合的丰富性; 最后, 利用 GIOU(Generalized Intersection Over Union)损失函数代替原有的 CIOU

(Complete Intersection Over Union) , 相比 CIOU, GIOU 引入了最小包围框面积比率, 可更准确衡量框的重合面积。 实验结果表明, YOLOv8-DSG 算法在 NEU-DET 数据集上平均精度 mAP 达到 80% , 相较于原 YOLOv8算法, 提高了 3. 3% , 且误检、 漏检率低, 具有更高的检测精度和运算效率, 可在质量检测方面发挥重要作用。

关键词: 缺陷检测, YOLOv8 算法, 可变形卷积, 注意力机制, 损失函数

Abstract:

At the traditional image processing algorithms for the detection of steel surface defects, there are problems such as low recognition efficiency and a high false detection rate of leakage. The YOLOv8-DSG (Deformable Convolution Network Squeeze and Excitation Network Generalized Intersection over Union) steel surface defect detection algorithm is proposed. Based on the traditional YOLOv8 algorithm, several improvements are made. Firstly, the DCN ( Deformable Convolutional Network) is embedded in the C2f ( Convolution to Feature) module of the Backbone network, which enhances the feature extraction ability of the model under

complex background conditions. Secondly, the SE ( Squeeze and Excitation network ) attention module is introduced into the Neck network, which highlights the important feature information of the steel surface and enhances the richness of the feature fusion. Lastly, the GIOU ( Generalized Intersection Over Union) loss function is used instead of the original CIOU(Complete Intersection Over Union). Compared with CIOU, GIOU introduces the minimum enclosing frame area ratio, which can more accurately measure the overlapping area of the frames. The experimental results show that the YOLOv8-DSG algorithm achieves an average accuracy mAP of

80% on the NEU-DET dataset, which is 3. 3% higher compared to the original YOLOv8 algorithm. And it has a low rate of misdetection and omission, demonstrating higher detection accuracy and arithmetic efficiency. This algorithm can play an important role in quality inspection.

Key words: defect detection, YOLOv8, deformable convolution, attention mechanism, loss function

中图分类号: 

  • TP391. 41