吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 187-184.

• • 上一篇    下一篇

结合 GCN  LSTM 考虑时空信息的城市交通流量预测

李正楠1,2, 赵智辉2   

  1. 1. 华南理工大学 机械与汽车工程学院, 广州 510640; 2. 广州邮电通信设备有限公司 博士后科研工作站, 广州 510663
  • 收稿日期:2023-12-11 出版日期:2025-02-24 发布日期:2025-02-24
  • 作者简介:李正楠(1990— ), 男, 山东肥城人, 华南理工大学与广州邮电通信设备有限公司联合培养博士后, 主要从事智慧交通研究, (Tel)86-13189059615(E-mail)lzn90@ outlook. com。

Urban Traffic Flow Prediction Considering Spatiotemporal Information Based on GCN and LSTM

LI Zhengnan1,2, ZHAO Zhihui2   

  1. 1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China; 2. Postdoctoral Research Station, Guangzhou Post & Telecom Eqipment Company Limited,Guangzhou 510663, China

  • Received:2023-12-11 Online:2025-02-24 Published:2025-02-24

摘要: 针对当前交通流量的智能预测方法没有分析和考虑路网的时空关联性问题在智能预测方法中增加了时空关联性信息, 解决了时空信息缺失造成的预测精度降低的问题。 首先结合交通路网的图连接和车辆通行延时特性, 分析城市路网的时空关联性; 考虑城市交通时空关联情况, 基于图卷积神经网络( GCN: Graph Convolutional Neural)和长短期记忆网络(LSTM: Long Short-Term Memory)方法, 研究了结合 GCN、LSTM 考虑时空信息的城市交通流量预测方法, 应用开源的城市交通流量数据集优化训练了城市交通流量预测网络, 并对比LSTM、 双向长短期记忆网络(BiLSTM: Bidirectional Long Short-Term Memory)及不同网络节点数目在求解该交通流量预测问题的表现。 研究结果表明, 该方法可以有效预测城市交通流量, 相对未考虑时空信息的预测方法准确度有所提升, 该研究可为智慧交通系统中的交通预测提供理论参考。

关键词: 图卷积神经网络, 长短期记忆网络, 城市交通, 车流预测, 时空信息

Abstract:

The current intelligent prediction methods for traffic flow have not analyzed and considered the spatiotemporal correlation of the road network. We conduct research and improvement to address this issue by adding spatiotemporal correlation information to the intelligent prediction methods to solve the problem of reduced prediction accuracy caused by the lack of spatiotemporal information. The spatiotemporal correlation of the urban road network is analyzed by combining the map connection of the traffic network and the vehicle traffic delay. Considering the spatiotemporal correlation of urban traffic, based on the GCN( Graph Convolutional Neural)

network and LSTM ( Long Short-Term Memory) network methods, the urban traffic flow prediction method considering spatiotemporal information based on GCN and LSTM is studied. Urban traffic flow prediction network is optimized and trained by using the open source urban traffic flow dataset. The performance of LSTM, BiLSTM (Bidirectional Long Short-Term Memory) network and different number of nodes in solving the traffic flow prediction problem is compared. The results of this research show that the proposed method can effectively predict urban traffic flow, and the accuracy of the proposed method is improved compared with the prediction method without considering spatiotemporal information. This research can provide a theoretical reference for traffic prediction in intelligent transportation systems.

Key words: graph convolutional neural network, short-term and short-term memory network, urban traffic, traffic flow prediction, spatiotemporal information

中图分类号: 

  • TP391