吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 195-202.

• • 上一篇    

基于双邻域和特征选择的潜在低秩稀疏投影

殷海双李 睿   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2023-05-31 出版日期:2025-02-24 发布日期:2025-02-24
  • 通讯作者: 李睿(1997— ), 男, 湖南湘西人, 东北石油大学硕士研究生, 主要从事流形学习和图像识别研究, (Tel)86-17373159451(E-mail)648597785@ qq. com。
  • 作者简介:殷海双(1979— ), 女, 吉林省吉林市人, 东北石油大学副教授, 硕士, 主要从事复杂系统的分析与设计、 自动化控制与模式识别等研究, (Tel)86-13694607060 ( E-mail) yhs09@ 126. com。
  • 基金资助:
    基于双邻域和特征选择的潜在低秩稀疏投影

Latent Low-Rank Projection Based on Dual Neighborhood and Feature Selection

YIN Haishuang, LI Rui   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2023-05-31 Online:2025-02-24 Published:2025-02-24

摘要: 针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP: Latent Low-Rank And Sparse Projection)。 该算法首先融合低秩约束和正交重构保持数据的主要能量, 然后对投影矩阵施加行稀疏约束进行特征选择, 使特征更加紧凑和具有可解释性。 此外引入 l2,1范数对误差分量进行正则化使模型对噪声更具健壮性。 最后在低维数据和低秩表示系数矩阵上施加邻域保持正则化以保留数据的局部几何结构。 公开数据集上的大量实验结果表明, 所提方法与其他先进算法相比具有更好的性能。

关键词: 特征提取, 特征选择, 降维, 潜在低秩表示, 图像分类

Abstract:

In view of the defects that the projection matrix learned from LatLRR ( Latent Low Rank Representation) can not explain the importance of the extracted features and preserve the local geometry of data, a novel method named LLRSP (Latent Low-Rank and Sparse Projection) with dual neighborhood preserving and feature selection is proposed. The algorithm first combines low-rank constraint and orthogonal reconstruction to hold the main energy of the original data, and then applies a row sparse constraint to the projection matrix for feature selection, which makes the features to be more compact and interpretable. Furthermore, a l2,1 norm is introduced to regularize the error component to make the model more robust to noise. Finally, neighborhood preserving regularization is applied on the low dimensional data and low-rank representation matrix to preserve the local manifold geometrical structure of data. Datasets results of extensive experimental on various benchmark show that this method can obtain better performance than other state-of-the-art methods.


Key words: feature extraction, feature selection, dimensionality reduction, latent low-rank representation, image classification

中图分类号: 

  • TP181