吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 338-346.

• • 上一篇    下一篇

改进的混合布谷鸟算法及其应用

尚禹宏1, 胡 茜1, 王玉冰2   

  1. 1. 长春工业大学 数学与统计学院, 长春 130012; 2. 中国科学院长春光学精密机械与物理研究所发光学与应用国家重点实验室, 长春 130033
  • 收稿日期:2024-05-09 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 胡茜(1989— ), 女, 四川阆中人, 长春工业大学讲师, 主要从事经济统计研究, (Tel)86-18166802633(E-mail)huqian@ ccut. edu. cn。 E-mail:huqian@ ccut. edu. cn。
  • 作者简介:尚禹宏(1998— ), 女, 辽宁本溪人, 长春工业大学硕士研究生, 主要从事时间序列分析研究, ( Tel) 86-18846059336(E-mail)1123981400@ qq. com
  • 基金资助:
    国家自然科学基金资助项目(62090054)

Improved Hybrid Cuckoo Search and Its Application#br#

SHANG Yuhong1, HU Qian1, WANG Yubing2   

  1. 1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China;2. State Key Laboratory and Luminescence and Applications, Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China
  • Received:2024-05-09 Online:2025-04-08 Published:2025-04-10

摘要: 针对在寻解高维度复杂方程时, 布谷鸟算法(CS: Cuckoo Search)存在陷入局部最优的问题, 提出了一种改进的混合布谷鸟算法。首先, 利用混沌映射和反向学习机制初始化种群; 然后交替并行教与学算法(TLBO:Teaching Learning Based Optimization)和布谷鸟算法的搜索机制; 最后动态化自适应发现概率并嵌入差分进化机制(DE: Differential Evolution), 全面提升算法性能。6 个基准函数和 1 个优化光栅耦合器设计的仿真实验测试对比结果表明, 该算法在求解高维度方程时更具优势, 可有效解决 CS 算法容易陷入局部最优的问题。

关键词: 布谷鸟算法, 教与学优化算法, 差分进化算法, 混沌映射

Abstract: When solving high-dimensional equations, the CS (Cuckoo Search) has the drawback of falling into local optima. To address this deficiency, an improved hybrid cuckoo search is proposed. Firstly, the population is initialized using chaotic mapping and reversed learning mechanisms. Then the search mechanisms of TLBO (Teaching Learning Based Optimization) and CS are performed alternately. Finally, the discovery probability and embeds DE (Differential Evolution) are dynamically adjusted to comprehensively improve the algorithm's performance. The comparative results of simulation experiments with 6 benchmark functions and 1 optimized grating coupler design show that this algorithm is better for solving high-dimensional equations and effectively avoids the CS algorithm getting stuck in local optima.

Key words: cuckoo search, teaching learning based optimization, differential evolution, chaotic mapping

中图分类号: 

  • TP301. 6