吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 368-376.

• • 上一篇    下一篇

基于深度增强型生成对抗网络的叠后地震数据超分辨率重建

王瑞敏, 杨文博, 张文祥, 邓 聪, 鲁统祥, 谢 涛   

  1. 中海石油(中国)有限公司 湛江分公司, 广东 湛江 524057
  • 收稿日期:2024-07-11 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 杨文博(1983— ), 男, 甘肃张掖人, 中海石油(中国)有限公司湛江分公司物探工程师, 主要从事地震采集处理、 储层预测研究, (Tel)86-18665765155(E-mail) yangwb2@ cnooc. com. cn。 E-mail:yangwb2@ cnooc. com. cn。
  • 作者简介:王瑞敏(1984— ), 女, 山东聊城, 中海石油(中国)有限公司湛江分公司物探工程师, 主要从事地震采集处理、 信息技术研究, (Tel)86-13763063636(E-mail)wangrm2@ cnoon. com. cn
  • 基金资助:
    "十四五"冶重大科技基金资助项目(KJGG2022-0304)

Post-Stack Seismic Data of Super-Resolution Based on Deeply Augmented Generative Adversarial Networks

WANG Ruimin, YANG Wenbo, ZHANG Wenxiang, DENG Cong, LU Tongxiang, XIE Tao   

  1. Zhanjiang Branch, China National Offshore Oil Corporation China Limited, Zhanjiang 524057, China
  • Received:2024-07-11 Online:2025-04-08 Published:2025-04-10

摘要: 针对由于地球物理勘探环境的复杂性日益增加, 同时受采集和处理技术的限制, 叠后地震数据的分辨率和信噪比较低的问题, 为提升其分辨率的同时实现噪声压制, 提出了一种深度增强型超分辨生成对抗网络(DESRGAN: Depth-Enhanced Super-Resolution Generative Adversarial Network)。 DESRGAN 采用轻量化后的残差密集块(LRDB: Lightweight Residual Dense Block)作为基本单元以提升训练过程的效率和稳定性; 在深层特征提取阶段, 通过通道注意力机制增强对重要特征的关注; 考虑像素之间的空间关系, 在上采样操作中, 使用
像素重组代替插值。 在模拟和实测数据上的实验结果表明, 该网络不仅能重建作为测试集的模拟数据, 而且还能很好地泛用到复杂实测数据上。 在对比经典的生成对抗网络(GAN: Generative Adversarial Network)和卷积神经网络(CNN: Convolutional Neural Network)的实验中表明, 该方法的重建结果更清晰, 并在定量分析中具有更高的峰值信噪比和结构相似性。

关键词: 地震数据, 分辨率, 信噪比, 深度增强型

Abstract: As the environment of geophysical exploration becomes more complex, and it is limited by acquisition and processing technology which results in low resolution and signal-to-noise ratio of post-stack seismic data.Therefore, how to enhance its resolution while realizing noise attenuation is a non-negligible problem. A design called DESRGAN(Depth-Enhanced Super-Resolution Generative Adversarial Network) is proposed, which is intended to be applied to the task of super-resolution reconstruction of seismic data. DESRGAN uses a LRDB(Lightweight Residual Dense Block) as the base unit to improve the efficiency and stability of the training
process, passes through channel attention in the deep feature extraction phase to increase the focus on important features and performs an up-sampling operation using pixel reorganization instead of interpolation to take into account the spatial relationship between pixels. Experimental results on synthetic and field data show that the network can reconstruct the synthetic data as the test set and it is well generalized to the field data. Compared with classic GAN(Generative Adversarial Network) and CNN(Convolutional Neural Network), the reconstructed results are visually clearer, and have higher peak signal-to-noise ratio and structural similarity in quantitative analysis.

Key words: seismic data, resolution, signal-to-noise ratio, depth-enhanced super-resolution generative adversarial network

中图分类号: 

  • TP391. 4