吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 384-393.

• • 上一篇    下一篇

基于Bert-BiLSTM-CRF模型的中文命名实体识别

龙星全, 李 佳   

  1. 吉林化工学院 信息与控制工程学院, 吉林 吉林 132022
  • 收稿日期:2024-02-23 出版日期:2025-04-08 发布日期:2025-04-10
  • 作者简介:龙星全(1997— ), 男, 四川遂宁人, 吉林化工学院硕士研究生, 主要从事自然语言处理研究, ( Tel) 86-15828894087(E-mail)201110742@ qq. com; 李佳(1982— ),女, 吉林省吉林市人, 吉林化工学院副教授, 硕士生导师, 主要从事行业知识图谱构建与知识推理和“互联网+大数据+电力能源冶 交叉学科背景下的信息智能分析与应用技术研究, ( Tel)86-15981106976(E-mail)jlict_lj@ 126. com。
  • 基金资助:
    吉林省科技厅发展计划基金资助项目(20220101129JC)

Chinese Named Entity Recognition Based on BERT-BiLSTM-CRF

LONG Xingquan, LI Jia   

  1. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
  • Received:2024-02-23 Online:2025-04-08 Published:2025-04-10

摘要: 针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征, 存在中文样本数据的类别不平衡、 训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题, 提出了一种以 BERT-BiLSTM-CRF(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field)为基线改进的中文命名实体识别模型。 首先在 BERT-BiLSTM-CRF 模型上结合P-Tuning v2 技术, 精确提取数据特征, 然后使用 3 个损失函数包括聚焦损失( Focal Loss)、 标签平滑( Label Smoothing) 和 KL Loss(Kullback-Leibler divergence loss)作为正则项参与损失计算。 实验结果表明, 改进的模型在 Weibo、Resume 和MSRA(Microsoft Research Asia)数据集上的 F1 得分分别为 71. 13% 、96. 31% 、95. 90% , 验证了所提算法具有更好的性能, 并且在不同的下游任务中, 所提算法易于与其他的神经网络结合与扩展。

关键词: 中文命名实体识别, BERT-BiLSTM-CRF 模型, P-Tuning v2 技术, 损失函数

Abstract: Existing Chinese named entity recognition algorithms inadequately consider the data features of entity recognition tasks, leading to imbalance in the categories of Chinese sample data, excessive noise in the training data, and significant differences in the distribution of generated data. An improved Chinese named entity recognition model based on BERT-BiLSTM-CRF ( Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field) is proposed. The first improvement involves combining the P-Tuning v2 technology with BERT-BiLSTM-CRF to accurately extract data features. And three
loss functions, including Focal Loss, Label Smoothing, and KL Loss(Kullback-Leibler divergence loss), are utilized as regularization terms in the loss calculation to address the problems. The improved model achieves F1 scores of 71. 13% ,96. 31% , and 95. 90% on the Weibo, Resume, and MSRA( Microsoft Research Asia)datasets, respectively. The results validate that the proposed algorithm outperforms previous research achievements in terms of performance and is easy to combine and extend with other neural networks for various downstream tasks.

Key words: Chinese named entity recognition, bidirectional encoder representations from transformers-bidirectional long short-term memory-conditional random field ( BERT-BiLSTM-CRF ) model, P-tuning v2 technology, loss function

中图分类号: 

  • TP391. 1