吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 451-460.

• • 上一篇    

基于改进CEEMD算法与优化LSTM的光伏功率预测

许爱华, 贾皓天, 王智煜, 袁文俊   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2024-01-26 出版日期:2025-04-08 发布日期:2025-04-10
  • 作者简介:许爱华(1980— ), 男, 江苏东台人, 东北石油大学副教授, 硕士生导师, 主要从事电气系统及设备状态监测、 故障诊断与健康评估研究, (Tel)86-13704666200(E-mail)dqxah@ 163. com。

Photovoltaic Power Prediction Based on Improved CEEMD Algorithm and Optimized LSTM

XU Aihua, JIA Haotian, WANG Zhiyu, YUAN Wenjun   

  1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-01-26 Online:2025-04-08 Published:2025-04-10

摘要: 为了更好地利用太阳能, 准确预测光伏发电功率, 提高光伏功率预测的精度, 提出了一种基于因素相关互补集合经验模态分解算法 (CEEMD: Complementary Ensemble Empirical Mode Decomposition)与优化长短期记忆网络 (LSTM: Long Short-Term Memory network)结合的光伏功率预测方法。 首先, 使用 CEEMD 算法分解光伏功率时序, 建立分解功率分量与环境因素的 Pearson 相关系数矩阵, 每个分解功率分量选取 3 个关键因素作为后续预测的输入; 其次, 利用改进麻雀群搜索算法( ISSA: Improved Sparrow Search Algorithm)优化 LSTM 网络,建立 ISSA-LSTM 算法各光伏功率分量预测模型; 然后, 将各个分解模态的预测结果叠加重构; 最后, 结合南方某地光伏电站发电功率实测数据对所提方法进行验证, 结果验证了所提方法的有效性与优越性。

关键词: 光伏功率预测, CEEMD 算法, Pearson 相关矩阵, ISSA-LSTM 算法

Abstract: In order to better utilize solar energy, it is very important to accurately predict photovoltaic power generation. To improve the accuracy of photovoltaic power prediction,a photovoltaic power prediction method based on the combination of factor-related complementary ensemble empirical mode decomposition and optimized long short-term memory network is proposed. Firstly, the CEEMD(Complementary Ensemble Empirical Mode Decomposition) algorithm is used to decompose the photovoltaic power sequence, and the Pearson correlation coefficient matrix of the decomposed power components and environmental factors is established. Three key factors are selected as the input of the subsequent prediction for each decomposed power component.

Key words: photovoltaic power prediction, complementary ensemble empirical mode decomposition(CEEMD), Pearson correlation coefficient matrix, improved sparrow search algorithm-long short-term memory network(ISSA-LSTM)

中图分类号: 

  • TP391