吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 615-623.

• • 上一篇    下一篇

基于背景抑制与噪声监督的人群计数方法

洪  蕾,杨  明   

  1. 西南大学计算机与信息科学学院,重庆400700
  • 收稿日期:2024-05-27 出版日期:2025-06-19 发布日期:2025-06-19
  • 通讯作者: 杨明(1970— ), 女, 山东泰安人, 西南大学副教授, 硕士生导师, 主要从事机器学习、 人工智能研究,(Tel)86-13883870736(E-mail)yangming@ swu. edu. cn。
  • 作者简介:洪蕾(1999— ), 女, 郑州人, 西南大学硕士研究生, 主要从事计算机视觉研究, (Tel)86-15136208651(E-mail)roogko@ email. swu. edu. cn
  • 基金资助:
    重庆市技术创新与应用发展专项重点基金资助项目(CSTB2023TIAD-KPX0064) 

Crowd Counting Method Based on Background Suppression and Noise Supervision

HONG Lei, YANG Ming   

  1. College of Computer and Information Science, Southwest University, Chongqing 400700, China
  • Received:2024-05-27 Online:2025-06-19 Published:2025-06-19

摘要: 针对人群的大尺度变化、复杂的背景、 以及标签噪声对计数精准度产生严重影响的问题,提出了一种 基于背景抑制与噪声监督的人群计数模型。 该模型在编码阶段使用VGG16_bn的前13层作为主干网络, 将 初步提取到的特征输入到双分支特征提取模块与背景信息聚合模块,分别缓解人群大尺度变化并提高背景的 可辨性。 最后融合两个模块所处理的信息, 使用解码器回归生成预测密度图,并与ground truth密度图进行 监督以实现对噪声的抑制。 与其他算法相比结果表明,该模型的计数精准度有所提升,ShanghaiTech PartA 上的MAE(Mean Absolute Error) MSE(Mean Squared Error)分别为58.1 95.9; ShanghaiTech PartA 上进行 的消融实验也验证了各模块的有效性。 该算法能有效地提高人群计数的精度。

关键词: 人群计数, 密度图, 卷积神经网络, 深度学习, 噪声监督

Abstract: A crowd counting model based on background suppression and noise monitoring is proposed to solve the problems of large-scale change of crowd, complex background, and label noise. In the coding stage, the first 13 layers of VGG16_bn are used as the backbone, and the initially extracted features are sent to the two-branch feature extraction module and the background information aggregation module respectively, to mitigate the large- scale changes of the population and improve the discriminability of the background. Finally, the information processed by the two modules is fused, and the predictive density map is generated by decoder regression, which is supervised with the ground truth density map to achieve noise suppression. Compared with other algorithms, the counting accuracy of this model has been improved. MAE(Mean Absolute Error) and MSE(Mean Squared Error) on ShanghaiTech PartA are 58. 1 and 95. 9 respectively. Ablation experiments conducted on ShanghaiTech PartA also verified the effectiveness of the modules. Experimental results show that the algorithm can effectively improve the accuracy of crowd counting. 

Key words: crowd counting, density map, convolutional neural network, deep learning, noise supervision

中图分类号: 

  • TP391