吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 632-638.

• • 上一篇    下一篇

基于SVM 的智能情报分析数据风险特征筛选算法 

董传民1, 侯仰博2, 樊祜卿3, 李士杰   

  1. 1. 菏泽市科学技术信息研究所,山东菏泽274002;2. 菏泽市产品检验检测研究院,山东菏泽274032; 3. 菏泽市动物疫病预防控制中心,山东菏泽274006
  • 收稿日期:2023-08-31 出版日期:2025-06-19 发布日期:2025-06-19
  • 通讯作者: 李士杰(1993— ), 男, 山东菏泽人, 菏泽市科学技术信息研究 所助理研究员,主要从事科技情报研究,(Tel)86-15197844727(E-mail)89740271016@qq. com。
  • 作者简介:董传民(1981— ), 男, 山东聊城人, 菏泽市科学技术信息研究所副研究员, 主要从事科技情报研究, (Tel)86- 15201298643(E-mail)dcm274000@126. com
  • 基金资助:
    菏泽市科技计划基金资助项目(2022KJCXZD03) 

Data Risk Feature Screening Algorithm of Intelligent Intelligence Analysis Based on SVM

DONG Chuanmin1, HOU Yangbo2, FAN Huqing3, LI Shijie1   

  1. 1. Heze Institute of Science and Technology Information, Heze 274002, China; 2. Heze Institute of Product Inspection and Testing, Heze 274032, China; 3. Heze Animal Disease Control Center, Heze 274006, China
  • Received:2023-08-31 Online:2025-06-19 Published:2025-06-19

摘要: 为提高数据利用率,避免信息中风险因素对情报分析的影响,提出基于SVM(Support Vector Machine)的 智能情报分析数据风险特征筛选算法。 利用连续小波变换方法,排除情报数据中噪声信号对分析结果的影响, 结合主成分分析法建立投影矩阵,提取多种类无噪情报数据主要特征;将多种类情报数据的主要特征提取结果 输入至支持向量机中,利用最优化理论建立支持向量机内分类平面,并明确分类平面内特征数据分类规则, 实现情报数据风险特征的筛选。 实验结果表明,所提方法对情报数据可准确分类, 风险数据检测效率较高, 能实现风险数据的有效筛选。

关键词: 连续小波变换方法, 主成分分析法, 最优化理论, 分类平面

Abstract: In order to improve the data utilization rate and avoid the influence of risk factors in information on intelligence analysis, a risk feature screening algorithm for intelligent intelligence analysis data based on SVM (Support Vector Machine) is proposed. The continuous wavelet transform method is used to eliminate the influence of noise signals in intelligence data on the analysis results, and the projection matrix is established by combining principal component analysis method to extract the main features of various types of noise-free intelligence data. The main feature extraction results of various kinds of intelligence data are input into support vector machine, and the classification plane in support vector machine is established by using optimization theory, and the classification rules of feature data in the classification plane are defined to screen the risk features of intelligence data. The experimental results show that the proposed method can accurately classify intelligence data, and the risk data detection efficiency is high, which can realize effective screening of risk data.

Key words: continuous wavelet transform method, principal component analysis method, optimization theory, classification plane

中图分类号: 

  • TP399