吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 645-651.

• • 上一篇    下一篇

数据驱动和异构计算下行业用户电量需求预测

黄文琦1,2, 赵翔宇2, 梁凌宇2, 曹  尚2, 张焕明2   

  1. 1. 浙江大学 信息与通信工程学院,杭州310058;2. 南方电网数字电网研究院有限公司技术研发中心,广州510700
  • 收稿日期:2023-09-21 出版日期:2025-06-19 发布日期:2025-06-19
  • 作者简介:黄文琦(1988— ), 女, 广州人, 浙江大学高级工程师,博士,主要从事电力数字化研究, (Tel)86-15900223714(E-mail) zhaoxy1@ csg. cn。
  • 基金资助:
    南方电网数字电网研究院有限公司基金资助项目(2100002022030102JF00036)

Data Driven and Heterogeneous Computing Based Prediction of Industry User Electricity Demand 

HUANG Wenqi1,2, ZHAO Xiangyu2, LIANG Lingyu2, CAO Shang2, ZHANG Huanming   

  1. 1. College of Information and Telecommunications Engineering, Zhejiang University, Hangzhou 310058, China; 2. Technology R&D Center, Southern Power Grid Digital Grid Research Institute Company Limited, Guangzhou 510700, China
  • Received:2023-09-21 Online:2025-06-19 Published:2025-06-19

摘要: 由于行业用户的电量需求通常受季节性和周期性的影响,且有时获取的数据不完整、缺失或存在错误, 其均会对预测的准确性产生负面影响。 为实现对行业用户电量需求的精准预测,提出数据驱动和异构计算下 行业用户电量需求预测方法。 利用Lagrange插值算法填补用户电量数据缺失部分, 采用标准化预处理电量数 据。 为使电量需求预测足够精准,使用去噪自编码器、稀疏约束函数提取电量数据特征。 通过长时间记忆神经 网络的遗忘、输入、更新及输出门层得出电量未来变化趋势, 完成行业用户电量需求预测任务。 实验结果 表明, 所提方法适用于长期、短期的行业用户电量预测,且预测结果精度高、耗时短。

关键词: 数据驱动, 异构计算, 用户电量需求, 去噪自编码器, 偏置项, 权重矩阵

Abstract: The electricity demand of industry users is usually affected by seasonal and cyclical factors, and sometimes the data obtained is incomplete, missing, or incorrect, which can have a negative impact on the accuracy of predictions. In order to achieve accurate prediction of industry user electricity demand, a data-driven and heterogeneous computing method for predicting industry user electricity demand is proposed. The Lagrange interpolation algorithm is used to fill in the missing part of user electricity data, the standardized preprocessing of electricity data is used to make electricity demand prediction accurate enough, denoising autoencoders and sparse constraint functions are used to extract electricity data features. The long-term memory neural network’s forgetting gate layer, input gate layer, update gate layer, and output gate layer are used to obtain the future trend of electricity demand, the task of industry user electricity demand prediction is completed. The experimental results show that the proposed method is suitable for long-term and short-term industry user electricity prediction, and the prediction results have high accuracy and short time consumption. 

Key words: data driven, heterogeneous computing, user electricity demand, denoising autoencoder, bias term, weight matrix

中图分类号: 

  • TP391