吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 662-670.

• • 上一篇    下一篇

分形加权局部形态模式算法的构建及其应用

王  淳1, 邢  敏1, 逯  洋2   

  1. 1. 长春金融高等专科学校信息技术学院,长春130124;2. 吉林师范大学 数学与计算机学院,吉林四平136000
  • 收稿日期:2023-09-18 出版日期:2025-06-19 发布日期:2025-06-19
  • 作者简介:王淳(1998— ), 女, 吉林四平人, 长春金融高等专科学校助教,主要从事图像识别研究, (Tel)86-15943496559(E-mail) wangchun_522@163. com
  • 基金资助:
    吉林省教育厅科学研究基金资助项目(JJKH20251773KJ); 长春金融高等专科学校科研规划基金资助项目(2024JZ015)

Construction and Application of Fractal Weighted Local Morphological Pattern Algorithm

WANG Chun1, XING Min1, LU Yang2   

  1. 1. College of Information Technology, Changchun Finance College, Changchun 130124, China; 2. College of Mathematics and Computer, Jilin Normal University, Siping 136000, China
  • Received:2023-09-18 Online:2025-06-19 Published:2025-06-19

摘要: 为增强纹理特征提取算法对旋转、 光照和尺度变化的鲁棒性, 提出分形加权局部形态模式(FWLMP: Fractal Weighted Local Morphological Pattern)。 首先, 利用分形维数对尺度变化的相对不变性, 构建一个尺度 不变的描述符。 然后使用数学形态学中的膨胀、腐蚀和开闭运算对其进行采样分析,利用分形维数图像计算其 权重。 该算法具有尺度不变性,对旋转和光照变化也具有鲁棒性。 为实现对清朝服饰图像的分类,构建了清朝 文武官补子图像数据集,并将FWLMP和同类算法在4个公共纹理数据集和自建的清朝文武官补子图像数据集 上进行了实验。 实验结果表明,FWLMP在纹理图像分类和清朝文武官补子图像分类上具有较好的应用价值。

关键词: 分形维数, 局部形态模式, 清朝服饰, 数据集, 纹理分类

Abstract: Texture feature extraction is the key to texture classification, and there are various factors such as rotation, illumination, and scale variations in texture images. To enhance the robustness of the texture feature extraction algorithm for rotation, illumination, and scale variations, the FWLMP ( Fractal Weighted Local Morphological Pattern) is proposed. First, a scale-invariant descriptor is constructed by using the relative invariance of fractal dimensionality to scale variation. Then, it is sampled and analyzed using the expansion, erosion, and opening-closing operations in mathematical morphology, and its weights are calculated by using the fractal dimension image. This algorithm is scale-invariant and robust to rotation and illumination changes. To achieve the classification of Qing Dynasty costume images, the Qing Dynasty Buzi image dataset is constructed. The FWLMP and similar algorithms are tested on four public texture datasets and a private dataset constructed by ourselves. The experimental results show that the FWLMP algorithm performs well in texture image classification and in Buzi image classification for Qing Dynasty civil and military officials. 

Key words: fractal dimension, local morphological pattern, qing dynasty costume, dataset, texture classification

中图分类号: 

  • TP391.41