吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 671-681.

• • 上一篇    下一篇

低照度彩色偏振图像增强算法

 段  锦1, 郝水莲1, 高美玲1, 黄丹丹1, 朱文博2, 付为杰   

  1. 1. 长春理工大学 电子信息工程学院,长春130022;2. 佛山科技学院 自动化学院,广东佛山528000
  • 收稿日期:2024-04-15 出版日期:2025-06-19 发布日期:2025-06-19
  • 作者简介:段锦(1971— ), 男, 长春人, 长春理工大学教授, 博士生导师, 主要从事模式识别、 偏振成像研究, (Tel)86- 15753017638(E-mail)duanjin@ vip. sina. com。
  • 基金资助:
    CTS科技集团公司921所基金资助项目(266210)

Image Enhancement Algorithm of Low-Light Color Polarization

DUAN Jin1, HAO Shuilian1, GAO Meiling1, HUANG Dandan1, ZHU Wenbo2, FU Weijie   

  1. 1. College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2. College of Automation, Foshan University of Science and Technology, Foshan 528000, China
  • Received:2024-04-15 Online:2025-06-19 Published:2025-06-19

摘要:  针对低照度场景下彩色偏振图像亮度低、噪声严重以及颜色失真等问题,提出了一种低照度彩色偏振 图像色彩增强的无监督学习算法LPEGAN(Low-Light Polarization Enhance Generative Adversarial Network)。 首先, 设计双分支特征提取模块,使用不同分支分别对斯托克斯参数S0 S1 , S2 进行特征提取; 其次, 构建残差 空洞卷积模块,不同扩张率能扩大感受野,提高模型提取能力,减少图像颜色失真;最后,构造边缘纹理损失 函数, 用于保证增强图像与输入图像的结构相似性。 在公开的数据集LLCP(Low-Light Chromatic Intensity- Polarization Imaging) IPLNet(Intensity-Polarization Imaging in Low Light Network)以及自建数据集上进行了实验验 证。 结果表明,相较于其他算法,所提算法能呈现出更好的视觉效果,且各项评价指标均得到明显改善,偏振 图像亮度得到增强,噪声得到明显抑制,并且图像颜色更加真实自然。

关键词: 低照度偏振图像, 双分支特征提取, 残差空洞卷积, 边缘结构相似性损失 

Abstract:  In order to solve the problems of low brightness, serious noise, and color distortion of color polarization images in low-illumination scenes, an unsupervised learning algorithm for color enhancement of low- illumination color polarization images is proposed, which is named LPEGAN(Low-Light Polarization Enhance Generative Adversarial Network). Firstly, a double-branch feature extraction module is designed and used different branches to extract features from Stokes parameters S0 and S1 ,S2 , respectively. Secondly, the residual void convolution module is constructed. And the different expansion rates can expand the receptive field to improve the model extraction ability and reduce the image color distortion. The edge texture loss function is constructed to ensure the structural similarity between the enhanced image and the input image. Experimental verification is carried out on the public datasets LLCP(Low-Light Chromatic Intensity-Polarization Imaging), IPLNet(Intensity-Polarization Imaging in Low Light Network), and self-built datasets. The experimental results show that the proposed algorithm has better visual effects, and all evaluation indicators are significantly improved. Polarized image brightness is enhanced, noise is significantly suppressed, and image colors are more realistic and natural.

Key words: low-light polarized image, double-branch feature extraction, residual void convolution, edge structural loss

中图分类号: 

  • TP391.41