吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1006-1113.

• • 上一篇    下一篇

基于改进 YOLACT++ 的语义SLAM 

任伟建1, 沈文旭1, 任 璐2, 张永丰   

  1. 1. 东北石油大学 电气信息工程学院,黑龙江大庆163319;2. 海洋石油工程股份有限公司,天津300450; 3. 大庆油田有限责任公司第二采油厂,黑龙江大庆163414
  • 收稿日期:2024-05-09 出版日期:2025-09-28 发布日期:2025-11-19
  • 作者简介:任伟建(1963— ), 女, 黑龙江泰来人, 东北石油大学教授, 博士生导师, 主要从事油气集输过程故障诊断研究, (Tel) 86-15765988699(E-mail)1064619284@ qq. com
  • 基金资助:
    国家自然科学基金资助项目(61933007); 河北省自然科学基金面上资助项目(D2022107001)

Semantic SLAM System Based on Improved YOLACT++ 

REN Weijian1, SHEN Wenxu1, REN Lu2, ZHANG Yongfeng3    

  1. 1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China; 2. Offshore Oil Engineering Company Limited, Tianjin 300450, China; 3. Oil Production Plant, Daqing Oilfield Company Limited, Daqing 163414, China
  • Received:2024-05-09 Online:2025-09-28 Published:2025-11-19

摘要: 针对基于静态场景特征进行相机位姿估计的即时定位与地图构建(SLAM: Simultaneous Localization and Mapping)技术, 在其前端的特征计算和匹配的过程中易受到动态物体干扰的问题, 提出了实例分割结合多视几何约束的方法,以改进视觉SLAM的前端特征处理, 剔除动态信息的干扰。 在ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping3) 框架的前端, 并行 YOLACT++(You Only Look At CoefficienTs++)实例分割线程, 将分割后的结果使用多视几何约束的方法补充检验特征点动态一致性; 运用 EfficientNetV2网络替换 YOLACT++原来的主干网络, 并使用 TensorRT 量化实例分割模型, 以减轻算法的前端计算压力。 经TUM(Technical University of Munich)数据集测试结果表明, 该算法在高动态环境下的定位精度较 ORB-SLAM3 算法平均提升了80.6%

关键词: 语义SLAM, YOLACT++分割算法,  多视几何约束,  动态场景 

Abstract: SLAM(Simultaneous Localization and Mapping) technology is a camera pose estimation based on static scene features. It is susceptible to dynamic objects in the process of feature calculation and matching at its front end. Therefore a method of instance segmentation combined with multi-view geometric constraints is proposed to improve the front-end feature processing of visual SLAM and eliminate the interference of dynamic information. Specifically, in the front end of the ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping3) framework, the YOLACT + + (You Only Look At CoefficienTs + +) instance segmentation thread is paralleled, and the segmented results are used to supplement the multi-view geometric constraint method testing the dynamic consistency of feature points. The EfficientNetV2 network is used to replace the original backbone network of YOLACT + +, and the TensorRT is used to quantify the instance segmentation model to reduce the front-end computing pressure of the algorithm. The test of TUM data set shows that the positioning accuracy of the proposed algorithm in high dynamic environment is 80. 6% higher than that of ORB-SLAM3 algorithm. 

Key words: semantic simultaneous localization and mapping(SLAM), YOLACT++ segmentation algorithm, multi-view geometric constraints, dynamic scene

中图分类号: 

  • TP391