吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1310-1322.

• • 上一篇    下一篇

双流解码器辅助配准算法

周丰丰, 赵天齐, 杜 伟   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2024-10-30 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:周丰丰(1977—), 男,江苏盐城人,吉林大学教授,博士生导师,主要从事健康大数据研究,(Tel)86-431-85166024 (E-mail)ffzhou@ jlu. edu. cn。
  • 基金资助:
    国家自然科学基金资助项目(62072212; U19A2061); 吉林省中青年科技创新创业卓越人才(团队)基金(创新类)资助项目(20210509055 RQ) ;吉林省大数据智能计算实验室基金资助项目(20180622002JC)

Dual-Streams Decoder Assisted Registration Algorithm

ZHOU Fengfeng, ZHAO Tianqi, DU Wei   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2024-10-30 Online:2025-12-08 Published:2025-12-08

摘要:

为解决当前医学图像配准算法普遍存在的精度不足的问题, 设计了基于金字塔结构的双流解码器辅助配准算法。该算法将卷积神经网络的局部依赖特性与注意力机制的全局依赖建模能力相结合, 通过独特的双流解码器设计, 实现对核磁共振脑图像的逐级精细配准。与传统将待配准图像简单拼接后处理的方法相比,其巧妙结合了交叉注意力计算和通道维度拼接两种特征融合方式的优势, 能识别多种变形模式并筛选出合适的变形场, 同时在保证性能的前提下最大限度地减少计算量。为验证算法的有效性, 在 2个3D脑部MRI(Magnetic Resonance Imaging) 数据集 LPBA( LONI Probabilistic Brain Atlas) 和 Mindboggle 上进行了综合实验。实验结果表明, 与常用配准算法相比, 该方法在多个评估指标上实现了最先进的性能, 充分展示了模型在可变形医学图像配准中的强大能力与应用潜力。

关键词:

Abstract:

To address the prevalent issue of insufficient accuracy in current medical image registration algorithms, a pyramid-structured dual-stream decoder-assisted registration algorithm is designed. This algorithm combines the local dependency characteristics of convolutional neural networks with the global dependency modeling capability of the attention mechanism. Through its unique dual-stream decoder design, it achieves progressive fine registration of magnetic resonance brain images. Unlike traditional methods that simply concatenate the images to be registered and then process them, this registration algorithm cleverly combines the advantages of cross-attention calculation and channel dimension concatenation for feature fusion. It can identify various deformation patterns and select the appropriate deformation field. By employing a pyramid structure and neighborhood attention mechanism, it greatly reduces the computational load while ensuring performance. To verify the effectiveness of the algorithm, comprehensive experiments are conducted on two 3D brain MRI (Magnetic Resonance Imaging ) datasets, LPBA ( LONI Probabilistic Brain Atlas ) and Mindboggle. The experimental results show that compared to commonly used registration algorithms, this method has achieved state-of-the-art performance on multiple evaluation metrics, fully demonstrating the strong capability and application potential of the model in deformable medical image registration.

Key words:

中图分类号: 

  • TP399