吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1297-1309.

• • 上一篇    下一篇

基于梯度交叉金字塔的机场跑道分割方法

赵海丽, 张继尧, 段 锦   

  1. 长春理工大学 电子信息工程学院, 长春 130022
  • 收稿日期:2024-05-28 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:赵海丽(1977— ), 女, 长春人, 长春理工大学教授, 博士,主要从事光电检测与智能信息处理技术、偏振成像探测与模式识别研究, (Tel)86-13604419852 (E-mail)zhljlcc@ 126. com。
  • 基金资助:
    国家自然科学基金重大仪器专项基金资助项目(62127813); 吉林省科技厅科技攻关基金资助项目(2021020192GX); 重庆自然科学基金资助项目(cstc2021jcyj-msxmX045)

ESGBPNet: Improving Airport Runway Segmentation with Enhanced Segformer Network Integrated with Cross-Gradient Pyramid

ZHAO Haili, ZHANG Jiyao, DUAN Jin   

  1. College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2024-05-28 Online:2025-12-08 Published:2025-12-08

摘要:

针对传统的机场跑道分割算法存在跑道大部分时间处于小目标状态, 即前景背景不平衡, 检测难度大;并且在飞机进近过程中, 机场跑道视场变化大, 背景复杂, 一般算法难以适应的问题, 提出了一种融合梯度交叉金字塔的改进 Segformer 算法用于机场跑道分割。首先, 在编码器部分优化了前馈神经网络与重叠块合并部分, 着重提取跑道有效信息; 其次, 在解码器部分提出了一种梯度增强的金字塔结构用于适应不同视场下的机场跑道分割; 最后, 设计了基于注意力机制的特征对齐模块和权重特征融合模块, 用于着重提取跑道边缘信息以及捕获跨层间的跑道语义关系, 以提升跑道掩码质量提高跑道分割精度。在自建数据集中验证了该算法, 结果表明, 其交并比与准确率达到了 91. 44% 和 97. 31% , 优于目前主流算法, 并能满足在可见光条件下对机场跑道的精准分割需要, 可为飞行员提供充足的跑道信息。

关键词:

Abstract:

The traditional airport runway segmentation algorithm mainly faces the many problems. Firstly, the runway is mostly in a small target state, the foreground and background are unbalanced, making detection difficult. Secondly, in the gradual change of aircraft, the field of view of the airport runway changes greatly, and the background of the airport runway is complex, which makes it difficult for general algorithms to adapt.Therefore, an improved Segformer algorithm incorporating gradient cross pyramid is proposed for airport runway segmentation. Firstly, in the encoder section, the feedforward neural network and the overlapping block merging
section are optimized, with a focus on extracting effective runway information. Secondly, a gradient enhanced pyramid structure is proposed in the decoder section to adapt to airport runway segmentation under different fields of view. Finally, a feature alignment module and a weight feature fusion module based on attention mechanism are designed to focus on extracting runway edge information and capturing cross layer runway semantic relationships improving the quality of runway masks and enhancing runway segmentation accuracy. The algorithm is validated in a self built dataset, and its intersection to union ratio and accuracy reached 91. 44% and 97. 31% , respectively, which is superior to current mainstream algorithms satisfying the precise segmentation needs of airport runways under visible light conditions can provide pilots with sufficient runway information.

Key words:

中图分类号: 

  • TP391. 4