吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1363-1368.

• • 上一篇    下一篇

结合CNN和旋转森林的影视视频标签分类算法优化

孙朋飞1,2a , 胡 悦2b , 张文俊3 , 许 婧2c   

  1. 1. 武汉理工大学 马克思主义学院, 武汉 430070; 2. 上海行健职业学院 a. 宣传部;b. 信息技术与智能制造学院; c. 科发处, 上海 200072; 3. 上海大学 电影学院, 上海 200072
  • 收稿日期:2024-06-07 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:孙朋飞(1984— ), 男, 河南禹州人, 武汉理工大学博士研究生, 上海行健职业学院讲师, 主要从事影视传播, 影视多媒体技术等研究, (Tel)86-19921253896(E-mail) Spf2050@ 163. com; 张文俊(1959— ), 男, 江苏无锡人, 上海大学教授,博士研究生导师, 主要从事数字媒体技术与应用、数字新媒体、网络通信技术及计算电磁学等研究, (Tel)86-15504794145(E-mail)zhangwj5904@ 126. com。
  • 基金资助:
    上海市教育科学研究基金资助项目(C2023242)

Optimization Algorithm of Film and Television Video for Label Classification Combining CNN and Rotating Forest

SUN Pengfei1,2a, HU Yue2b, ZHANG Wenjun3, XU Jing2c   

  1. 1. School of Marxism, Wuhan University of Technology, Wuhan 430070, China; 2a. Publicity Department; 2b. School of Information Technology and Intelligent Manufacturing; 2c. Research and Development Planning Department,Shanghai Xingjian College, Shanghai 200072, China; 3. Shanghai Film Academy, Shanghai University, Shanghai 200072, China
  • Received:2024-06-07 Online:2025-12-08 Published:2025-12-08

摘要:

视频内容的多样性和复杂性使视频标签分类变得困难, 由于不同的视频可能具有相似的特征但属于不同的类别, 或同一类别的视频在表现形式上可能存在巨大差异, 为有效提升影视视频标签分类结果的准确性, 提出一种结合 CNN(Convolutional Neural Network)和旋转森林的影视视频标签分类算法。将影视视频标签分类划分为两个阶段。第1阶段利用旋转森林算法实施影视视频标签样本集分割, 通过特征变换将每个样本子集转换到全新的特征空间, 得到多个差异较大的全新样本子集。 采用 AdaBoost 算法在样本集中进行多次迭代并组建多个AdaBoost 分类器, 引入概率平均法对分类结果融合, 得到初步标签分类结果。第 2 阶段, 将通过四元数Gabor 滤波卷积算法捕获的影视视频特征和第 1 阶段获取的标签初步分类结果作为 CNN 的输入, 在全连接层中引入 L1 正则化, 约束模型的复杂度, 并防止过拟合, 通过多轮次迭代训练完成影视视频标签分类。测试结果表明, 所提算法具有良好的影视视频标签分类性能, 能有效满足用户个性化需求。

关键词:

Abstract: The diversity and complexity of video content make video label classification difficult. Different videos may have similar features but belong to different categories, or videos of the same category may have significant differences in presentation. To effectively improve the accuracy of video label classification results, a video label classification algorithm combining CNN(Convolutional Neural Network) and rotated forest is proposed. Classify film and video tags into two stages. In the first stage, the rotation forest algorithm is used to segment the sample set of film and television video labels. Through feature transformation, each subset of samples is transformed into a completely new feature space, and multiple new sample subsets with significant differences are obtained. The AdaBoost algorithm is used to iterate multiple times in the sample set and construct multiple AdaBoost classifiers.The probability averaging method is introduced to fuse the classification results and obtain preliminary label classification results. In the second stage, the film and television video features captured by the quaternion Gabor filtering convolution algorithm and the preliminary classification results of the labels obtained in the first stage are used as inputs for the CNN. L1 regularization is introduced in the fully connected layer to constrain the complexity of the model and prevent overfitting. The film and television video label classification is completed through multiple rounds of iterative training. The test results show that the proposed algorithm has good performance in film and television video label classification and can effectively meet the personalized needs of users.

Key words:

中图分类号: 

  • TP391