吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1369-1380.

• • 上一篇    下一篇

基于GA-LightGBM模型的云顶高度反演方法

薛继伟, 张开心, 陈元琳, 范 萌2   

  1. 1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318;2. 中国科学院空天信息创新研究院 遥感科学国家重点实验室, 北京 100101
  • 收稿日期:2024-09-14 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 陈元琳(1980— ), 男, 湖北黄冈人, 中国科学院空天信息创新研究院博士研究生, 主要从事大气科学研究, (Tel)86-13936729827(E-mail)chenyuanlin@ aircas. ac. cn。 E-mail:chenyuanlin@ aircas. ac. cn
  • 作者简介:薛继伟(1973— ), 女, 黑龙江肇东人, 东北石油大学教授, 硕士生导师, 主要从事人工智能与大数据研究, ( Tel)86-15845986180(E-mail)xuejiwei@163.com
  • 基金资助:
    东北石油大学特色领域团队专项基金资助项目(2022TSTD-03)

Inversion Method of Cloud Top Height Based on GA-LightGBM Model

XUE Jiwei1, ZHANG Kaixin1, CHEN Yuanlin2, FAN Meng2   

  1. 1. College of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;2. State Key Laboratory of Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2024-09-14 Online:2025-12-08 Published:2025-12-08

摘要:

针对卫星遥感因其被动观测卫星的云识别和 CTH(Cloud Top Height)产品的精度通常有所欠缺, 而主动观测卫星虽然提供了高精度的 CTH 和云识别信息, 但观测范围有限的问题, 提出一种 GA-LightGBM(Genetic Algorithm-Light Gradient Boosting Machine)模型。该模型利用哨兵五号( S5P: Sentinel-5P)、第五代再分析数据(ERA5: Fifth generation ECMWF atmospheric reanalysis of the global climate)、 CALIPSO(Cloud-Aerosol Lidar and Infrared Path nder Satellite Observation)的数据, 分别进行云识别和 CTH 预测。使用 2018 年6月-2020 年 12 月的数据训练模型, 并应用 2021 年全年的数据测试模型性能。实验结果表明, 在测试集中, 云识别模型的准确率为 86% , 能很好地识别出云和晴空; 云顶高度反演模型的平均绝对误差( MAE: Mean Absolute Error) 为1. 26 km, 均方根误差(RMSE: Root Mean Square Error)为 1. 87 km, 决定系数 R2 为 0. 797 1, 反演结果与真实值存在较好的一致性, 证明了方法的有效性。

关键词:

Abstract:

The accuracy of cloud identification and CTH(Cloud Top Height) products from passive observation satellites often falls short. Although active observation satellites provide high-precision CTH and cloud identification information, their observational range is limited. To address these issues, a GA-LightGBM(Genetic Algorithm-Light Gradient Boosting Machine) model is proposed that utilizes data from Sentinel-5P(S5P: Sentinel-5P ), the fifth generation reanalysis data ( ERA5: Fifth generation ECMWF atmospheric reanalysis of the global climate ), and CALIPSO ( Cloud-Aerosol Lidar and Infrared Path nder Satellite Observation) to perform cloud identification and CTH prediction, respectively. The model is trained using data from June 2018 to December 2020 and tested with data from the entire year of 2021. Experimental results show that in the test set, the cloud identification model achieves an accuracy of 86% , effectively distinguishing clouds from clear skies. The cloud top height inversion model exhibits a MAE (Mean Absolute Error) of 1. 26 km, a RMSE ( Root Mean Square Error ) of 1. 87 km, and a coefficient of determination ( R2 ) of 0. 797 1,demonstrating good consistency with the true values and proving the effectiveness of the method.

Key words:

中图分类号: 

  • TP399